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ABSTRACT

The effectiveness of active control on asymmet-

ric flows around circular cones is investigated com-

putationally using cone spinning and rotatory oscil-
lation around its axis. The investigation uses the

time-accurate solution of the unsteady, compressible,

full Navier-Stokes equations with the implicit, up-

wind, flux-difference splitting, finite-volume scheme.

The present solutions are obtained under the locally-
conical-flow assumption in order to understand the

flow physics using very fine grids for reasonable flow
resolution at low computational cost. For all the com-

putational solutions, a grid of 241 x81 x2 points in
the wrap-around, normal and axial directions, respec-

tively, is used. The grid is spinning or oscillating

rigidly with the cone according to its motion and

the kinematical and dynamical boundary conditions
are modified accordingly. The computational appli-

cations include the effects of uniform spinning rates

and periodic rotatory oscillations at different ampli-

tudes and frequencies on the flow asymmetry.

INTRODUCTION

The problems of prediction, analysis and control
of asymmetric vortical flows around slender pointed

bodies are of vital importance to the dynamic stability

and controllability of missiles and fighter aircraft.

The onset of flow asymmetry occurs when the relative

incidence (ratio of angle of attack to nose semi-apex

angle) of pointed forebodies exceeds certain critical
values. In addition to the relative incidence as one

of the influential parameters for the onset of flow

asymmetrs, the freestream Mach number. Reynolds

number and shape of the body-cross sectional area

are also important parameters.
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Substantial research efforts have recently been de-

voted for eliminating or alleviating flow asymmetry

and its corresponding side force. In the experimental
area, several passive-control methods 1-3 and active-
control methods 4-8 have been investigated. Compu-

tational simulations have also been used to investigate
the effectiveness of several passive-control methods 9

and active-control methods -/, I0, II Various methods

of passive control were demonstrated in the above ref-
erences which include the use of vertical fins along

the leeward plane of geometric symmetry, thin and
thick side strakes with different orientations, and ro-

tatable forebody tips which have variable cross sec-

tion (from a circular shape at its base to an elliptic
shape at its tip). It was shown by Kandil et al. 9 that

side-strake control is more practical than vertical-fin
control since the former was more effective over a

wide range of angle of attack than the latter. More-
over, side-strake control provided an additional lifting
force. However, the effectiveness of side-strake con-

trol terminated at very high angles of attack for the

considered strake geometry and flow conditions.

Various active-control methods have been used

which include forebody blowing and movable fore-

body strakes. The forebody blowing methods include
forward blowing, normal blowing, aft blowing and

tangential blowing. The main purposes of forebody

blowing are to control flow separation on the fore-

body and to create yawing forces and moments which

can be utilized in controlling the body.

In Ref. 12, the authors investigated the effective-
ness of two methods of active control which include

flow injection and surface heating. The study of

flow-injection control covered normal and tangential

injection. Moreover, a hybrid method of flow con-
trol which combined surface heating and normal in-

jection methods was also investigated. These active
control methods were directed at either rendering the

asymmetric vortical flow symmetric or rendering the

surface-pressure distribution symmetric.

Active control of asymmetric flows around slender

pointed bodies using body spinning about its axis has



recently been investigated experimentally. Ktuse t3

investigated the effects of several spinning rates on
the side force of a 10° half apex-angle cone. The re-

suits were presented for spin tests at 58-60 ° angle of

attack, 0.6 Mach number and l × 106 Reynolds num-

ber (based on diameter). For the 58° angle of attack,
the side force versus the roll angle was shown for

four spin rates which varied from 60 rpm (revolu-

tion per minute) to 400 rpm. For all values of spin
rates, the side force changed direction in an irregular

manner within each revolution of the cone and it was

repeatable from one revolution to the next. More-

over, the side-force variation within each revolution

showed roughly three cycles, and there was an evi-

dence that the amplitude of the side force decreases

with the increase of spin rate.

Fidler TM used spinning of the nose, nose tip and

a band of the body surface as active-control methods

for alleviating asymmetric vortex effects on a tangent-

ogive configuration. By rotating the nose, nose tip
and a band of the body just aft of the nose, the wake

pattern and the associated side forces and moments
were cyclically altered. For the nose and nose-tip

rotations, the peak-to-peak variations of the side force
were decreased as the spin rate was increased. The

results also showed that the average side force was

constant throughout the spin range. However, by

using the nose tip with three axial grit strips, the mean

side force was brought to zero.

Experimental and computational studies on the
effects of rotation and rotatory oscillations on the

vortex shedding behind circular cylinders have re-

cently been conducted by several researchers 15"17.
Coutanceau and Menard 15 reviewed earlier work and

conducted experimental investigation on a circular

cylinder undergoing steady rotatory and rectilinear
motion. They concluded that if the ratio of rota-

tional velocity to rectilinear velocity is greater than 2,
then the Karm/m vortex street disappears. Taneda 16

showed that if the cylinder is forced to undergo a har-

monic rotatory, oscillations at large values of ampli-

tude and frequency then vortex shedding is eliminated

and a symmetric flow can be generated. Chen 17 et

al. integrated the velocity/vonicity formulation using

an explicit finite-difference/pseudo-spectral technique
and the Biot-Savan law to study the temporal devel-

opment of two-dimensional incompressible, viscous
flow around a circular cylinder undergoing steady ro-

tatory and rectilinear motion. Their computational
results showed that rotation does not suppress vortex

shedding for large values of the ratio of rotational ve-
locity to rectilinear velocity. This conclusion is not

in agreement with that of Cautanceau and Me,nard.

In the present paper, we investigate the effec-

tiveness of spinning and rotatory oscillation as ac-

tive control methods to eliminate or alleviate the side

forces due to vortex asymmetry for a 5°-semi-apex

angle, circular cone. The investigation uses the time-
accurate solution of the unsteady, compressible, full

Navier-Stokes (NS) equations. The locally, conical-

flow assumption is used to obtain all the present so-

lutions since it provides excellent flow physics at

substantially lower computational cost in compari-

son with that required for the corresponding three-

dimensional flow cases.

FORMULATION

oO
o--7+

where

Governing Equations:

The vector form of the governing equations is de-

veloped in terms of an inertial frame of reference,
and hence there are no source terms on the right-hand

side of the equations. Hence, the components of the

flow-field vector [p, pV, pe] l are absolute quantities.
This is unlike the earlier development of the gov-

erning equations by the principal author of this paper

(Ref. 18), where the equations are developed in terms
of a non-inertial frame of reference (translating and

rotation frame of reference) and source terms appear

on the right-hand side of the equations.

The conservative form of the dimensionless,

unsteady, compressible, full NS equations in

terms of time-dependent, body-conformed coordi-

nates (1,(2 and ('_ is given by

0E., 0(Er)__0:m = 1-3, s= 1-3

°_m °_ (1)

_m = (m(xl,.r2,xa,t) (2)

1 pe]' (3)0 = 7 =

E., = inviscid flux in (rn direction

.I'= 1_dak("'£,,. + "-ffi-qJ

1[= -ff pU.,,pulUm-t" 01("p, pu2Um

+ #2("p, pu._U,,, + O._("p,(pe + p)U,,

I'
(4)



(Ev)s= viscous and heat--conduction flux in _3

direction
1 s 8 $

= --:[0,0,t_ rk,,Ok_ rk2,Sk_ rk3,
d"

Ok_'(u,,r_n - qk)]'; k = 1 - 3, n = 1 - 3 (5)

0_" (6)
Um= Ok_muk+ 0--7-

and -_ is the grid speed. The three momentum
elements of Eq. (5) are given by

Ok'S rkJ - Meclg [ (Cgk'S fgJ'n -- _OJ'S C_k'n) OukRe"_

. Ouj ]
+ 0k¢ 0_ b-_Tj; j = 1 - 3 (7)

The last element of Eq. (5) is given by

M_#[(O,,sOp,"Oi._ s (Uprkp -- qk) = Re

_ 20.,.Ok,,,_ Ou_ . ,, On.
6]

.0(a_)l
1 0_¢ _j;p= 1-3 (8)+ (')- l)Pr

The reference parameters for the dimensionless form

of the equations are L,a_,L/a.x.,p_ and #zc. for

the length, velocity, time, density and molecular vis-

cosit), respectively. The Reynolds number is defined
as Re = px.l?x.L/#_., where L is the cone length.

The pressure, p. is related to the total energy per unit
mass. e. and density, p, by the gas equation

p = (._ _ l )p(, - lu,u,,) . (9)

The viscosity, ,m is calculated from the Sutherland

law

. = ( 1+c
\T+CJ" C=0.4317. (10)

and the Prandtl number Pr = 0.72.

In Eqs. (I)-(10). the indicial notation is used for

convenience. The subscripts 3. k and n are summation

indices, the superscript or subscript s is a summation

index and the superscript or subscript m is a free

index. The range of 3. k. n. s and m is I-3, and

Or. =- O/O.r_.. In Eqs. (1)-(10), un is the Cartesian

velocity component, U,, the contravariant velocity

component, rm the Cartesian component of the shear

stress tensor, qk the Cartesian component of heat flux

vector, a the local speed of sound and Mx the free-
stream Mach number.

Boundary and Initial Conditions
and Grid Motion:

Boundary conditions are explicitly implemented.

They include inflow-outflow conditions, solid-bound-

ary conditions and plane of geometric symmetry con-

ditions. At the plane of geometric symmetry, periodic

conditions are enforced. Since we are dealing with

a supersonic flow, at the far-field inflow boundaries,
freestream conditions are specified and all the five

flow variables are extrapolated from the exterior val-

ues according to the Riemarm-invariant characteristic
conditions. The conical shock is captured as part of

the solution. At the far-field outflow boundaries, first-

order extrapolation from the interior point is used.

Since the cone is undergoing spinning or rotatory-

oscillation motion at an angular velocity of wt;z

around the x-axis, where _z is a unit vector along

the x-axis and w is either uniform (for spinning mo-

tion) or time dependent (for rotatory oscillation), the

grid is moved with the same an_ular velocity as that
of the body. The grid speed, -_, and the metric co-

o _
efficient, _, are computed at each time step of the
computational scheme. Consequently, the kinemati-

cal boundary conditions at the inflow-outflow bound-
aries and at the cone surface are expressed in terms of

the relative velocities. For the dynamical boundary

condition, _nn at the cone surface is no longer equal
to zero. This condition for the present rotating cone

is modified as

Op / Od _ 2
= Pk r) o.,

(11)
where rc is the cone radius and fir is the acceleration
of the cone surface, it should be noted that the

other tangential acceleration does not contribute to

the right-hand side of Eq. (13) since its scalar product
with h is zero. Finally, the boundary condition for the

temperature is obtained from the adiabatic boundary

condition, 0._,,tco,,e =

The initial conditions correspond to the asymmet-

ric flow solution without the cone rotation.

COMPUTATIONAL SCHEME

The implicit, upwind, flux-difference splitting,
finite-volume scheme is used to solve the unsteady,

compressible, full Navier-Stokes equations. The
scheme uses the flux-difference splitting of Roe. The

smooth flux limiter is used to eliminate oscillations

at locations of large flow gradients. The viscous-
and heat-flux terms are linearized in time and the

cross-derivative terms are eliminated in the implicit



operatorandretainedin theexplicitterms. The vis-
cous terms are differenced using second-order accu-

rate cenu'al differencing. The resulting difference

equation is approximately factored and is solved in

three sweeps in the _1_2 and _3 directions. The

computational scheme is coded in the computer pro-

gram "FTNS3D".

For the locally-conical flow solutions, an axial

station ofzl = 1.0 is selected and the components of
the flowfield vector are forced to be equal between

this axial station and another axial station in close

proximity. This ensures that the flow variables are

locally independent of the axial direction at zl = 1.0.

The method of solution consists of two steps. In

the first step, the problem is solved for the asymmetric

flow without rotating the cone. This solution repre-
sents the initial conditions for the second step. In the

second step, the cone spinning rate or rotatory oscil-

lation is specified and the NS equations are solved

accurately in time. At each time step, the body and

the grid are rotated through an angle corresponding
to the cone rotational velocity. The metric coeffi-

cients and the grid speed are computed and the Roe

flux-difference splitting scheme is used to obtain the

solution. The computations proceed until periodic

responses are obtained.

COMPUTATIONAL APPLICATIONS

A .5° semi-apex angle circular cone is used for the

present applications. The freestream Mach number
is 1.8 and the Reynolds number based on the cone

length is l0 _. A grid of 241x81x2 grid points in

the wrap-around, normal and axial directions, respec-

tively, is used for all the computational applications.
The minimum grid size, A_:_, at the cone surface is
of order 10-.4.

Initial Conditions, Cone at o = 20 °, _t 2 = O:

The cone is set at an angle of attack, o, of 20° and

the spinning rate, _, is set equal to zero. Figure 1

shows the total-pressure-loss (TPL) contours, surface-

pressure (SP) coefficient versus angle 0 (measured
from the windward plane of geometric symmetry)

and streamlines for the locally-conical flow solution

after 13.000 time steps. The solution is obtained

using time-accurate stepping with At -- 0.001. The
solution shows that the flow is steady and asymmetric.

This solution serves as initial conditions for the next

applications with different spinning rates.

Uniform Spinning Rate:

There are several basic ideas behind the use of

spinning to alleviate or possibly eliminate the asym-

metry of vortices and their subsequent result of pro-

ducing a side force on the cone. One of the ideas

can be explained by considering the asymmetric so-

lution of Fig. 1, which represents the initial condi-

tion. By spinning the cone in the counter-clockwise

direction, the speed of boundary-layer flow on the

right-hand side of the cone is enhanced for resist-

ing flow separation while the speed of the boundary-

layer flow on the left-hand side of the cone is re-

tarded for producing early flow separation. More-

over, the spinning motion is adding either positive

or negative vonicity in the flowfield. Hence, by se-

lecting the appropriate spinning rate, the asymmetric

vortices might be rendered symmetric. This is the

first effect of spinning. The second effect of spin-

ning is the increase of the pressure gradient normal

the body (_lconc = pJ2rcon_)." For small valuesto

of w, the effect of the pressure gradient will not be
/

pronounced. However, for large values of _, the ef-

fect of the pressure gradient will be pronounced, the
other idea behind using spinning as an active con-
trol method is based on the experimental data where

Kruse 13 and Fidler 14 found that spinning produced

oscillatory side-force response. If the mean of the

side force is zero then the average side force will be

zero. In the next applications, we present the effects
0 2

of constant spinning at tangential velocities, _', of

±0.06 and ±0.2 which correspond to spinning rates,

fl, of ±2,292 rpm and ±7,639 rpm for a cone of one

meter long, respectively.

1. Uniform Spinning at ±0.06:

Figures 2 and 3 show the results for uniform

counter-clockwise (CCW) spinning at _ - 0.06,

and Figures 4 and 5 show the results for uniform

clockwise (CW) spinning ai _ = -0.06. All spin-

ning cases start at the time step n = 13,001 and the
solutions are obtained with At = 0.001. With the

present surface speed of 0.06, the cone rotates one
revolution in 9.163 dimensionless time, which cor-

responds to 9,163 time steps. Figure 2 shows the
side-force and lift coefficients (Cy and CL) versus the

number of time steps. It is observed that the force

coefficients reach a periodic response very quickly

and the period of oscillation is 9.163 dimensionless

time, which is equal to the time required to rotate

the cone one revolution. The Cy curve oscillates be-
tween -0.00069 and -0.00053 with a mean value of



-0.00061.Themagnitudeofthemean Cy is less than

the magnitude of Cy without spinning which is equal
to 0.00065. Thus, the CCW spinning reduces the

magnitude of the side force on the average. The CL-
coefficient curve shows small-amplitude periodic re-

sponse. In Fig. 3, snapshots of the TPL contours, SP
coefficient and streamlines are shown at five instants

covering one cycle of periodic side-force response.

They are marked by the numbers 1, 2, 3, 4 and 5

on Figs. 2 and 3. The snapshots show that the right
and left vortices heights, lateral positions, strength-

ens and separation points oscillate slightly. Conse-

quently, the corresponding surface pressures oscillate

slightly too. The CCW spinning delays flow separa-

tion on the right side and expedites flow separation

on the left side.

With the CW spinning of--0.06, the Cy and CL

curves of Fig. 4 show that their periodic response is
also reached very quickly. The Cy curve oscillates
between --0.00077 and -0.00055 with a mean value of

-0.00066. The magnitude of the mean Cy is slightly

higher than the magnitude of Cy without spinning.
Thus. the CW spinning does not reduce the mean

value of side force. Figure 5 shows snapshots of the
TPL contours, SP coefficients and streamlines at four

instants (marked by 1, 2, 3 and 4 in Figs. 3 and 4) dur-

ing one cycle of periodic response. The CW spinning
increases flow separation on the right side and delays

flow separation on the left side. Comparisons of the

snapshots of Fig. 5 with the corresponding snapshots

of Fig. 3, show that the vortex on the right-hand side

of Fig. 5 (snapshot !) moves more to the right while

the vortex on the right-hand side of Fig. 3 (snapshot

I) moves more to the left. Similar motions are ob-
served for the vortex on the left side of Figs. 5 and 3

(snapshot 1). Hence, the side force at point i of the
CW spinning will be of higher magnitude than the

side force at point 1 of the CCW spinning.

2. Uniform Spinning at *-.0.2:

Next. the uniform spinning is increased to 0.2.

The results of the CCW spinning are shown in Figs. 6
and 7 and the results of the CW spinning are shown

in Fig. 8. With the surface speed of 0.2, the cone
rotates one revolution in 2.749 dimensionless time,

which corresponds to 2,749 time steps. Figure 6

shows that the Cy and CL curves reach a periodic

response very, quickly and the period of oscillation is
2.749 dimensionless time. The Cy curve oscillates
between -0.00089 and -0.000050 with a mean value

of -0.00047. The magnitude of the mean Cy is

substantially lower than the magnitude of Cy without

spinning. Thus, the high CCW spinning does reduce
the mean value of side force. It should be noticed

that the amplitude of oscillation of the CL curve is

higher than that of Fig. 2. Three snapshots of the
TPL contours, SP coefficient and streamlines during

a half-cycle of the periodic Cy curve (marked by 1,

2 and 3 in Figs. 6 and 7) are shown in Fig. 7. It is

noticed that the CCW spinning substantially increases

the flow separation on the left side and delays the

flow separation on the right side. Also, it is noticed

that the right-hand side vortex moves more in the
downward and leftward directions than that of Fig. 3.

The left-hand side vortex moves more in the leftward

direction than that of Fig. 3.

Figure 8 shows the Cy and CL periodic responses
for the CW spinning case at -0.2. The Cy curve
oscillates between -0.00102 and -0.00021 with a

mean value of-0.00615. The magnitude of the

mean Cy is lower than the magnitude of Cy without

spinning but it is substantially higher than the mean
value of the CCW spinning of Fig. 6. A snapshot of
the TPL contours, SP coefficient and streamlines is

shown in Fig. g. The CW spinning is observed to
increase the flow separation on the right side and the
left-hand side vortex moves more to the right.

3. Uniform Spinning at +0.6:

The uniform spinning is increased to 0.6 and the
results of the CCW spinning are shown in Fig. 9.

With the speed of 0.6, the cone rotates one revo-
lution in 0.916 dimensionless time. The Cy curve

shows the periodic response which oscillates between
-0.005 and +0.0038 with a mean value of -0.0006.

With this high value of CCW spinning, the side-force

coefficient is oscillating between positive and nega-
tive values and the vortices on the left and right sides

are changing heights periodically. It is noticed that

the boundary layer at certain instants will become a

free-shear-layer band around the body (e.g. Fig. 9-

snapshot !). Although the mean value of side force
is not zero, this test tells that there is a certain CCW

spinning value at which the mean side force will be

zero.

Rotatory Oscillations:

In this section, we investigate the effect of pe-

riodic rotatory oscillation of the cone on the flow

asymmetry and the side force. The form of the sur-

face speed is given by

0(2 _ cos 27rt (12)
cgt 7"



where Vs is the surface-speed amplitude and r is the

period of oscillation. Substituting Eq. (12) into the
02

relation de = -_/rc and integrating the result one
obtains the corresponding equation for the angular

motion, 0, which is

2_r
0 = Oasin mt (13)

T

V.r
where Oa = "x_'_. By specifying V, and r, one can
obtain the amplitude of the angular motion, 0a, for a
certain value of the cone radius, re. Next, we present

the results for different values of Vs and r of the

periodic rotatory oscillation.

1. Rotatory Oscillation; Vs=O.06, r-=7.2, 0a=45°:

The corresponding frequency of this motion is

0.873. The results of this case are given in Fig. 10.

The period of the Cy response is observed to be
7.2 which is the same as that of the motion. The

Cy curve oscillates between -0.00077 and -0.00054
with a mean value of -0.000655, which is between

the mean values of CCW and CW spinning cases of

Figs. 2 and 4. Hence, these values of Vs,r and Oa
for the rotatory oscillation do not reduce the mean

value of Cy.

2. Rotatory Oscillation; Vs = 0.2, 7-= 4.3, Oa = 90°:

The corresponding frequency of this motion is
1.461. The results of this case are given in Fig. 11.

The period of the Cy response is observed to be 4.3
which is the same as that of the motion. The Cy curve

oscillates between -0.00105 and -0.0002 with a mean

value of-0.000625. This mean value of the Cy is

higher than that of the CCW spinning case of Fig. 6
and is slightly higher than that of the CW spinning

case of Fig. 8. Hence, these values of _.r and 0o

for the rotatory oscillation do not reduce the mean

value of Cy.

3. Rotatory Oscillation; Vs = 0.5,

_- = 7.2, 0o = 375°:

The corresponding frequency of this motion is
0.873. which is the same as that of the case of Fig. 10.

However. the amplitudes of the surface velocity, and

angular motion are one order of magnitude higher
than those of the case of Fig. 10. The results of this

case are given in Fig. 12. Although the Cy response

is periodic with the same period as that of the motion,

there are several peaks within each period. The Cy

changes sign from positive to negative and the mean
value of the Cy is zero. This shows that the values of

V,,r and 0, for the rotatory oscillation eliminate the

Cy on the average. It should be emphasized here that

both the amplitudes of surface velocity and angular

motion are one order of magnitude higher than that

of the ease of Fig. 10.

4. Vs = 0.5, r = 4.3, Oa = 225°:

The corresponding frequency of this motion is

1.461, which is the same as that of the case of Fig. 11.

However, the amplitudes of the surface velocity and

angular motion are 2.5 times as those of the case of

Fig. 11. The results of this case are given in Fig. 13.

The Cy response is periodic with the same period
as that of the motion, but with several peaks within

each period. Here again the Cy changes sign from

positive to negative and the mean value of the Cy

is -0.00015, which is better than that of any of the

uniform spinning cases or the rotatory oscillations of

Figs. 10 and 11. However, it is higher than that of

the previous case. The only differences between this

case and the previous case is the period of oscillation

and the amplitude of angular motion. Although the

magnitude of the mean Cy is higher than that of the
case of Fig. 12, the peak values of Cy of the present

case are substantially lower than those of the previous

case. It seems that the best Cy response (zero mean

and small amplitude) can be achieved by using the

higher Oo and the lower r of the present case and

the previous case. Optimal control laws should be

developed to effectively investigate this problem.

CONCLUDING REMARKS

in the present study, the effectiveness of uniform

spinning and rotary oscillation as active control meth-

ods for alleviating the flow asymmetry and the side

force has been investigated computationally. It has

been shown that a large value of uniform CCW spin-

ning rate is very effective in substantially reducing the

side force on the average for the given initial case of

asymmetric flow. The CCW spinning increases flow

separation on the left side and delays it on the right

side, which produces equal positive and negative side

forces within each cycle of the side-force response.

The rotatory oscillation with large surface-velocity

amplitude, large angular-motion amplitude and small

period of oscillation (high frequency) is much more
effective than the uniform CCW spinning for the same

surface velocity because it does not only eliminate

the mean side force but it also reduces the amplitude

of the side force substantially. Moreover, the effec-

tiveness of the rotatory oscillation control does not

require certain initial shape of the vortex asymmetry.



Workiscurrentlyunderway to study the effectiveness

of the rotatory oscillation control on asymmetric flow

cases with periodic vortex shedding at high angles of

attack. Optimal control laws should be developed for

investigating this problem.
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ABSTRACT

The effects of freestream Mach number and angle of

attack on the leading-edge vortex breakdown due to the

terminating shock on a 65--degree, sharp-edged, cropped

delta wing are investigated computationally. The compu-
tational investigation uses the time-accurate solution of
the laminar, unsteady, compressible, full Navier-Stokes

equations with the implicit, upwind, flux-difference split-
ting, finite-volume scheme. A fine O-H grid consisting of

125x85x84 points in the wrap-around, normal and axial
directions, respectively, is used for all the flow cases.

Keeping the Reynolds number fixed at 3.23x106, the
Mach number is varied from 0.85 to 0.9 and the angle

of attack is varied from 20 ° to 24 °. The results show that

at 20 ° angle of attack, the increase of the Mach number
from 0.85 to 0.9 results in moving the location of the ter-

minating shock downstream. The results also show that
at 0.85 Mach number, the increase of the angle of at-

tack from 20 ° to 24 ° results in moving the location of

the terminating shock upstream. The results are in good

agreement with the experimental data.

INTRODUCTION

The literature shows that vortical flows around delta

wings in the low-speed regime have received a substantial
volume of experimental 1-4 and computational s-9 research

work. In the high angle of attack range, vortical flows in

the low-speed regime are characterized with three types

of boundary-layer separation, namely; primary, secondary
and tertiary separations. The primary separated flow rolls

up into a strong primary vortex core which produces a

strong suction-pressure peak on the wing surface. The

spanwise adverse-pressure gradient of the primary vortex
causes the spanwise, outboard-moving, boundary-layer
flow to separate forming a secondary vortex with opposite
sense of rotation to and smaller strength than that of the

primary vortex. The spanwise adverse-pressure gradient
of the secondary vortex causes the spanwise, inboard-

moving, boundary-layer flow to separate forming a ter-
tiary vortex with same sense of rotation as and substan-

tially small strength than that of the primary vortex. The

spanwise surface-pressure curves are characterized with
three suction-pressure peaks which varies in strength cur-
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"" Profe_or, Eminent Scholar and Chairman of Dept. of Aerospace Engineer-
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responding to the locations of the primary, secondary and

tertiary vortices. When the angle of attack reaches a crib
ical value, the axial-pressure gradient and the high swirl

ratio of the primary vortex produce a stagnation point

along the path line of the primary-vortex core, and vor-
tex breakdown of the primary core develops. Depending

on the swirl ratio, axial pressure gradient and Reynolds

number, the primary-core vortex-breakdown mode might

be a bubble type, a spiral type or a bubble-spiral type.

As the freestream Mach number increases, the vortical

flow around the delta wing changes substantially due to

the compressibility effects. In the supersonic flow regime,
shock waves appear beneath or above the primary vor-

tex, depending on the freestreara normal Mach number
and normal angle of attack. Experimental data 1°' 11 and

the computational results 12-14 have shown these types of
vortical-flow structures. The foot print of these shock

waves runs along a ray line from the wing vertex. If

the shock wave is beneath the primary vortex, it interacts

with the spanwise, outboard-moving, boundary-layer flow
and causes, in addition to the adverse pressure gradient

produced by the primary vortex, secondary-flow separa-
tion. If the shock wave is above the primary vortex, it

flattens the primary vortex and the spanwise surface pres-
sure curve. Comparison of the surface pressure distribu-

tion over a delta wing in low-speed and supersonic-speed

regimes, shows that the suction-pressure peak correspond-

ing to the primary vortex is lower for the supersonic flow

than that for the low-speed flow.

In the transonic-flow regime, research work on vor-

tical flows around delta wings was given adequate at-

tention only recently. Understanding the steady and un-

steady, transonic, vortical-flow structures around delta

wings in the moderate-high angle of attack range is im-

portant for increasing the performance quality of the new
generation of supermaneuver aircraft (e.g. YF22). Recent

experimental measurements of transonic flows around a
65 ° cropped delta wing 15-2_ show that a complex shock-

wave system appears over the upper wing surface. The
shock-wave system consists of a ray shock wave beneath

the leading-edge primary vortex and a transverse, time-

dependent 16, normal-shock wave (known as a terminat-

ing shock) which runs from the plane of symmetry to the
wing leading edge. The terminating shock wave interacts
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with the primary-vortex core causing it to breakdown at

an angle of attack as low as 18 °. Such a critical angle
of attack is substantially smaller than the critical angle

of attack of vortex breakdown in the Iow-spoed regime.
Reference 21 contains extensive flow measurements for

the 650 cropped delta wing with and without leading-

edge extension (LEX). A complete reconstruction of the
three-dimensional flow field at and behind the terminating

shock was not possible experimentally.

Computational simulations for transonic delta-wing

flows have been developed on a very limited scale by
using the Euler equations _, 22 and the thin-layer Navier-

Stokes eqnations22. The Euler-eqnations solutions were

not capable of fully resolving the flow in the terminating

shock region and the thin-layer Navier-Stokes-equations
solutions did not address that region. In Ref. 24 by the

present authors, the laminar, unsteady, compressible, full

Navier-Stokes equations are integrated time accurately us-
ing the implicit, upwind, flux-difference splitting, finite-

volume scheme to study and conslruct the flow field

structure of a transonic flow around a 65 ° sharp-edged,
cropped-delta wing at 20 ° angle to attack, 0.85 Mach

number and 3.23x106 Reynolds number. A fine O-H
grid consisting of 125 × 85 × 84 points in the wrap-around,

normal and axial directions, respectively, is used for the

computational solution. A A-shock system, which con-
sists of a ray shock under the primary vortex core and

a transverse terminating shock, has been captured. Be-

hind the terminating shock, the leading-edge vortex core
breaks down into a two-bubble cell type. The terminat-

ing shock and the vortex breakdown region behind it are
time dependent and appear to be oscillatory. The flow

field ahead of the terminating shock is steady and in-
cludes a supersonic pocket which is surrounded by the

ray shock and the terminating shock. The flow inside

the pocket does not change due to changes in the flow
downstream. This is consistent with the fact that the su-

personic pocket along with the terminating shock do not

allow disturbances to propagate upstream. These results
have been validated using the available experimental data
and they are in good agreement. This work gives a com-

plete construction of the flow field over the wing surface
and in particular the structure of the flow at the terminat-

ing shock and behind it.

In this paper, a parametric study is carried out to in-
vestigate the effects of freestream Mach number and an-

gle of attack on the terminating shock and the leading-

edge, primary-vortex breakdown for the same 65 ° sharp-
edged, cropped delta wing. The computational investiga-

tion uses the same equations, computational scheme and

grid of Ref. 24. Keeping the Reynolds number fixed at
3.23 × 106, the Mach number is changed from 0.85 to 0.9

while the angle of attack is fixed at 20", and the angle

of attack is changed from 200 to 240 while the Mach
number is fixed at 0.85.

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative form of the dimensionless, unsteady,

compressible, full Navier-Stokes equations is used for the

formulation of the problem. The equations are written in

terms of the time-independent, body-conformed coordi-
nates _1, _: and _ (Ref. 25).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-

ible, full Navier-Stokes equations. The scheme uses the

flux-difference splitting scheme of Roe which is based

on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-

ference at the interface of computational cells is split into

two parts; left and right flux differences. The spfitting is
accomplished according to the signs of the eigenvalues of

the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to

eliminate oscillations at locations of large flow gradients.
The viscous- and heat-flux terms are linearized in time

and the cross-derivative terms are neglected in the im-

plicit operator and retained in the explicit terms. The vis-
cous terms are differenced using a second-order accurate

central differencing. The resulting difference equation is
approximately factored and is solved in three sweeps in

the _l,_'-, and _s directions. The computational scheme

is coded in the computer program "FTNS3D" which is a
modified version of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65 ° swept-back, sharp-edged, cropped delta wing

of zero thickness is considered for the computational so-

lutions. The cropping ratio (tip length/root-chord length)
is 0.15. An O-H grid of 125x85×84 in the wrap-around,

normal and axial directions, respectively, is used. The

computational domain extends two-chord length forward

and five-chord length backward from the wing trailing

edge. The radius of the computational domain is four-
chord length. The minimum grid size normal to the wing
surface is 5×10 .4 from the leading edge to the plane of

symmetry. Figure 1 shows a three-dimensional shape of

the grid and a cross-flow plane.

Time-accurate integration of the laminar, unsteady,

compressible, full Navier-Stokes equations has been car-
ried out with At = 0.0002. Three flow conditions are

used to study the effect of increasing the Mach number

while the angle of attack is kept constant and the effect
of increasing the angle of attack while the Mach num-

ber is kept constant In all the three cases, the Reynolds
number, Pc, is 3.23 × 106 based on the root-chord length.

Case I (M_ = 0.85, _ = 20*)

For this case, the freestream Mach number, M_, and
angle of attack, o, are 0.85 and 20 °, respectively. Figure 2

shows a comparison of the computed, spanwise, surface-

pressure coefficient (Cp) at different chord stations (x =
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0.3, 0.6 and 0.8) with the experimental data of Erickson 21

(R_ = 3.23x lff i) and Harunann 17 (Re = 2.38x106 and

4.57 x 106). The computational results show the correct

location and level of the suction-pressure peak corre-

sponding to the primary vortex in comparison with the

experimental data. They also show a smaller suction-

pressure peak corresponding to the secondary vortex. The
computational results are in fair to good agreement with

the experimental data. For the chord station x = 0.9, the

Cp-curve shows a rapid increase in the pressure coeffi-
cient (a decrease in the suction-pressure coefficient). For

example, the suction-pressure-peak coefficient increases
from a value of -1.4 at x = 0.8 to a value of -1.15 at x =

0.9. Figure 3 shows the total-Mach contours and stream-
lines at the chord stations of x = 0.60, 0.90 and 0.97.

At x = 0.60, the Mach contours show an oblique shock

beneath the primary vortex and a subsonic, separated re-

gion to its right. The streamlines show a secondary sepa-

rated flow and the corresponding secondary vortex. This

separation is due to the shock interaction with the sur-
face boundary-layer flow and is also due to the adverse,

spanwise pressure gradient created by the primary vor-
tex. At x = 0.90, the shock beneath the primary vortex

becomes weak and the primary-vortex size increases. At
x = 0.97, the shock beneath the primary vortex disap-

pears and the primary vortex diffuses and reduces to a
repelling .focus, as shown by the streamlines. The details
of the flow structure at x = 0.90 and 0.97 in addition

to the spanwise, pressure-distribution curve at x = 0.90
clearly indicate that the primary vortex is experiencing a
vortex breakdown due to a transverse shock (terminating

shock) which is located between x = 0.80 and x = 0.90.

Figure 4 shows the static pressure contours on the

wing and symmetry planes. The contours clearly show

the location, shape and strength of the terminating shock.

A substantial supersonic pocket which is bounded by the
terminating shock and the ray shocks (shocks beneath

the primary-vortex cores) is observed on the wing plane.
The terminating shock is located at x = 0.83 at the

plane of symmetry, which is in good agreement with the
experimental data _] , where the shock is located at x = 0.84

at the plane of symmetry. Figure 5 shows the position of

ray lines from the wing vertex (which are marked by the

letters A-H) and the static-pressure variation along these
lines. The static-pressure curves give several points to

generate the foot-print line of the terminating shock. The

terminating shock is found to extend from the plane of
symmetry to the wing leading edge. It reaches its highest

strength at the location of the primary vortex (lines E-G).

Figure 6 shows the totaI-Mach contours and streamlines
on a vertical ray plane at the 0.68 spanwise location which

passes through the vortex breakdown. Blow-ups of the

velocity vectors and streamlines on this ray plane are also
shown in Fig. 6. The streamlines conclusively show a

two-bubble cell vortex breakdown. It is a typical three-
dimensional vortex breakdown mode which consists of

an attracting saddle point (front), a repelling saddle point

(rear), an attracting focus (top), and a repelling focus

(bottom). Such a breakdown mode is similar to the one

which was captured for an isolated supersonic vortex in
an unbounded domain in Refs. 26 and 27. The location

of the attracting saddle point is at 0.97 along the ray line

which corresponds to a location of 0.87 along the axial
direction. The Mach contours show that the front surface

of the vortex-breakdown bubbles is enclosed by a hemi-

spherical shape-like shock surface. In Fig. 18, the details
of the flow structure on the wing and symmetry planes

are shown.

Having established the flow structure of this case, the
Mach number is increased to 0.9 while the angle of attack

is kept fixed at 20*.

Case II (Moo = 0.90, _ = 20 °)

The results of this case are given in Figs. 7-11 and

19. Figure 7 shows the computational spanwise, surface-

pressure coefficient at different chord stations along with
the experimental data of Erickson 2t. The computational

results are in good agreement with the experimental data
at x = 0.3 and 0.6. At x = 0.8, the computational re-

suits underestimates the pressure coefficient of the exper-
imental data. The locations of the primary and secondary

vortex cores are in good agreement with those of the ex-

perimental data. It is noticed that the levels of Cp for

the present case are lower than those of Case I (Fig. 2).

Again, the pressure level decreases rapidly at x = 0.90.
Figure 8 shows the total-Mach contours and streamlines

in cross-flow planes at x = 0.60, 0.90 and 0.97. The shock

beneath the primary vortex is observed in the Figures at
x = 0.60 and x = 0.90. For x = 0.90, the shock beneath

the primary vortex is still strong in comparison with that

of Case I (Fig. 3). At x = 0.97, the repelling focus is
observed indicating that vortex breakdown has occurred.

Figure 9 shows that the terminating shock in the cross-
flow plane is located at x -- 0.93 within the boundary-

layer, which is in good comparison with the experimen-
tally measured shock of Ref. 21, where it is located at x

= 0.95. The static-pressure contours on the wing plane
show that the terminating shock for Case II (Fig. 9) is

closer to the trailing edge that ofCase I (Fig. 4). It should
be noted here that the terminating-shock location in the

outer flow is ahead of its location in the boundary-layer

flow. The static-pressure variations along the ray lines of

Fig. 10 clearly show that the terminating-shock foot print
is located between x = 0.925 and x = 0.95, and that it

extends from the plane of symmetry to the wing leading

edge. Figure 11 shows the Mach contours and stream-

lines on a vertical ray plane passing through the vortex
breakdown. It is noticed that the vortex breakdown shape

is different from and smaller than that of Case I (Fig. 6).

The attracting saddle point, attracting focus and repelling
saddle point are clearly observed. The repelling focus

is very small. This indicates that the terminating shock
becomes smaller in strength than that of Case I. Figure
19 shows the details of this flow case on the wing and

symmetry planes.
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It is concluded that as the fr_stream Maeh number

increases slightly from 0.85 to 0.9, the terminating shock

strength decreases and its location moves downstream
from x = 0.84 to x :- 0.93. Moreover, the surface pressure
levels become smaller than those of Case I.

Next, the Mach number is kept fixed at 0.85 and the

angle of attack is increased to 24 °.

Case III (Moo = 0.85, a = 24 °)

The results of this case are given in Figs. 12-17 and

20. The computational surface-pressure result at x = 0.3

(Fig. 12) is in good agreement with the experimental data
of Erickson 21. However, the computational results, at x

= 0.6 and 0.8 are either overpredicting or underpredicting

the experimental data. Figures 13, 14 and 15 show that

the terminating shock moves upstream to x = 0.753 in the
boundary-layer flow at the plane of symmetry. This is in
good agreement with the experimental data of Ref. 21,

where the shock is located at x = 0.75 in the boundary

layer flow. The terminating-shock location in the outer

flow is ahead of its location in the boundary layer. Figure
16 shows that the vortex-breakdown region is larger than

those of Cases I and II. Moreover, the attracting and

repelling foci are smaller than those of Case I. Figure 20
shows the details of this case on the wing and symmetry
planes.

Thus, it is seen that as the angle of attack increases

from 20 ° to 24 ° while the Mach number is kept fixed

at 0.85, the terminating shock moves upstream and the
vortex-breakdown region becomes large. Moreover, the

surface pressure levels become larger than those of Case I.

The computational results show that the flow at the

terminating shock and behind it is time dependent and it

indicates oscillatory motion (The computations have not
been carried out beyond t = 6.0 or 30,000 time steps

with At = 0.0002). In Fig. 17, we show snapshots of the

streamlines and their blow-ups on a ray plane passing

through the vortex-breakdown region. The snapshots
are shown at t = 4.22, 5.16 and 5.52. It is clearly

seen that the vortex breakdown moves upstream showing
different modes. In the same time, the terminating shock

is also moving upstream and slows down to reverse its
direction of motion. This is in complete agreement with
the experimental observations of Bannik and Houtmann _6.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-

Stokes equations are integrated time accurately using the
implicit, upwind, flux-difference splitting finite-volume

scheme to study the transonic flow field around a 65 °

sharp-edged, cropped delta wing. First, the flow field has
been constructed for a Reynolds number of 3.23x 106,

a Mach number of 0.85 and an angle of attack of 20*

(Case I). A A-shock system consisting of a ray shock be-

neath the primary vortex core and a transverse terminating

shock has been captured. Behind the terminating shock,

the leading-edge vortex core breaks down. Keeping the
Reynolds number constant and the angle of attack fixed
at 20., the Math number is increased to 0.90. The results

of this case (Case IF) show flint the terminating shock

moves downstream and the vortex-breakdown region be-

comes smaller than that of Case I. Keeping the Reynolds
number constant and the Mach number fixed at 0.85, the

angle of attack is increased to 20*. The results of this

case (Case Ill) show that the terminating shock moves up-
stream and the vortex-breakdown region becomes larger

than that of Case I. The computational results are in good

agreement with the experimental data. However, it must
be emphasized that the flow at the terminating shock and

behind it is time dependent while the flow ahead of the

terminating shock is steady. The present paper shows the

structure of the flow field behind the terminating shock
for the first time.

ACKNOWLEDGEMENT

For the first two authors, this work is supported by the
NASA-Langley Research Center under grant No. NAG-

1-994 along with a partial support from the AFOSR. The

Computational Resources provided by the NAS Center
at Ames and the NASA Langley Research Center are

acknowledged and appreciated.

REFERENCES

.

.

.

.

Marsden, D. J., Simpson, R. W. and Rainbird, W.

J., 'The Flow Over Delta W'mgs at Low Speeds with
Leading Edge Separation," College of Aeronautics,

Cranfield, Rep. CoA-I14, 1957.

Lamboume, N. C. and Bryer, D. W., "Some Mea-

surements in the Vortex Flow Generated by a Sharp

Leading Edge Having 65 Degrees of Sweep," Aero-
nautical Research Council, CP No. 477, 1960.

Hummel, O., "On the Vortex Formation Over a Slen-

der Wing at Large Angles of Incidences," AGARD
CP-247, January 1979, pp. 15.1-15.7.

Verhaagen, N. G., "An Experimental Investigation of

the Vortex Flow Over Delta and Double Delta Wings
at Low Speed," AGARD CP-342, April 1983, pp.
7.1-7.16.

.

.

.

Kandil, O. A., "Numerical Prediction of Vortex Cores

from the Leading and Trailing Edges of Delta Wings,"

ICAS Paper No. 14.2, 12th Congress of the Inter-
national Council of Aeronautical Sciences, Munich,

Germany, October 1980.

Hoeijmakers, H. W. M., "Aerodynamics of Vortical

Type Flows in Three Dimensions," AGARD CP-342,
July 1983, pp. 18.1-18.35.

Newsome, R. W. and Kandil, O. A., "Vortical Flow

Aerodynamics-Physical Aspects and Numerical Sim-

ulation," AIAA Paper 87--0205, January 1987.

585



8. Thomas, J. L., Taylor, S. L. and Anderson, K.,

"Navier-Stokes Computations of Vortical Flows Over
Low Aspect Wings," AIAA Paper 87-0207, January
1987.

9. Kandil, O. A. and Chuang, H. A., "Computation of

Vortex-Dominated Flow for a Delta Wing Undergoing

Pitching Oscillation," AIAA Journal, Vol. 28, No. 9,

September 1990, pp. 1589-1595.

10. Stanbrook, A. and Squire, L. C., "'Possible Types of

Flow at Swept Leading Edges," Aeronautical Quar-

terly, Vol. XV, Feb. 1964.

11. Miller, D. S. and Wood, R. W., "Lee-Side Flow Over

Delta Wings at Supersonic Speeds," NASA TP 2430,
1985.

12. Kandil, O. A. and Chuang, A. H., "Influence of Nu-

merical Dissipation on Computational Euler Equa-
tions for Vortex-Dominated Flows," AIAA Journal,

Vol. 25, No. 11, November 1987, pp. 1426-1434.

13. Newsome, R. W. and Thomas, J. L., "Computation

of Leading-Edge Vortex Flows," NACA CP-2416,

October 1985, pp. 305-330.

14. Murman, E. M., Goodsell, A., Powell, K. and Lan-

dahl, M., "Leading Edge Vortex Solutions with Large

Total Pressure Loss," AIAA Paper 87-0039, January
1987.

15. Boersen, S. J. and Eisenaar, A., "Tests on the AFWAL

65 ° Delta Wing at NLR: A Study of Vortex Flow De-

velopment Between Mach = 0.4 and 4," Proceedings

of Symposium on International Vortex Flow Experi-
ment on Euler Code Validation, Stockholm, Sweden,

October 1-3, 1986, pp. 23-36.

16. Bannik, W. J. and Houanan, E. M., "Experiments
on the Transonic Flow Over a Delta Wing at High

Angles of Attack," Proceedings of Symposium on
International Vortex Flow Experiment on Euler Code

Validation, Stockholm, Sweden, October I-3, 1986,

pp. 37-46.

17. Hartmann, K., "Force and Pressure Measurements

Including Surface Flow Visualization on a Cropped

Delta Wing," Proceedings of Symposium on Interna-
tional Vortex Flow Experiment on Euler Code Vali-
dation, Stockholm, Sweden, October I-3, 1986, pp.

63-87.

18. Biltefisch, K. A., Pallek, D. and Sauerland, K. H.,

"'International Vortex Flow Experiment-Results of

Three Component LDA Measurements on a 65* Delta

Wing," DFVLR IB 222--87 A 34, 1987.

19. Elsenaar, A., Hjelmberg, L., Blltefisch, K. and Ban-
nink, W. J., "The International Vortex Flow Experi-

ment," AGARD-CP-437, Lison, Portugal, May 1988,

Vol. 1., pp. 9.1-9.23.

20. Bannink, W. J. and Houtman, E. M., "Experimental

and Computational Study of the Vortical Flow Over

a Delta wing at High Angles of Attack," IUTAM

Symposium on Fluid Dynamics of High Angle of
Attack, University of Japan, Tokyo, Japan, September

14-17, 1992.

21. Erickson, G. E., "Wind Tunnel Investigation of The
Interaction and Breakdown Characteristics of Slender-

Wing Vortices at Subsonic, Transonic and Supersonic

Speeds," NASA Tech. paper 3114, November 1991.

22. Hitzel, S. M., "Wing Vortex-Flows Up into Vortex-
Breakdown-A Numerical Simulation," AIAA 88-

2518-CP, 1988, pp. 73-83.

23. Laine, S., Siikonen, T. and Kaurinkoski, P-, "Cal-
culation of Transonic Viscous Flow Around a Delta

Wing," ICAS 92--4.2.1, Beijing, PRC, September 22-

25, 1992, pp. 286-295.

24. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Shock-

Vortex Interaction Over a 65-Degree Delta Wing in

Transonic Flow," AIAA Paper 93-2973, AIAA 24th

Fluid Dynamics Conference, Orlando, FL, July 6-9,
1993.

25. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Su-

personic Quasi-Axisymmetric Vortex Breakdown,"

AIAA 91-3311--CP, September 1991, pp. 851-863.

26. Kandil, O. A., Kandil, H. A. and Liu, C. H., "Three-

Dimensional Supersonic Vortex Breakdown," AIAA
93-0526, January 11-14, 1993.

27. Kandil, H. A., "Navier-Stokes Simulation of Quasi-

Axisymmetry and Three-Dimensional Supersonic
Vortex-Breakdown," Ph.D. Dissertation, Dept. of Me-

chanical Engineering and Mechanics, Old Dominion
University, Norfolk, VA, May 1993.

586



Fig. 1 Three-dimensional shape and cross-flow plane of a fine grid, 125x85x84.
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Fig. 18 Surface-pressure and Mach contours and panicle trace on wing and

symmetry planes; -lIx = 0.85, ,_ = 20 °.
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Fig. 19 Surface-pressure and Mach contours and particle trace on wing and

symmetry planes: .1I× = 0.90, ,_ = 20 °
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Fig. 20 Surface-pressure and Mach contours and panicle trace on wing and

symmetry planes: .1/x = 0.85. _ = 24 _
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ABSTRACT

Transonic flow over a 65-degree swept-back, sharp-

edged, cropped delta wing is investigated computationaily

using the time-accurate solution of the unsteady, com-
pressible, full Navier-Stokes equations with an implicit.

upwind, flux-difference splitting, finite-volume scheme.
Coarse and fine O-H grids are used to obtain the so-

lutiun. The grid consists of 125x85x84 points in the

wrap.around, normal and axial directions, respectively.
The results are presented for an angle of attack of 20 °,
March number of 0.85 and Reynolds number of 3.23 x 106

(based on the wing chord length). With the fine grid, the
results show that a system of shocks has been captured

over the upper wing surfsce, and that the leading-edge

vortex core experiences an unsteady, supersonic vcxtex
breakdown after passing through a spanwise shock (ter-

minating shock) near the wing trailing edge. The com-

puted results at a certain time are in good agreement with
the experimental data. Topological aspects of the vortex-
breakdown flowfield are also presented and discussed.

INTRODUCTION

At sufficiently high angles of attack, vortex break-

down for incompressible flows around delta wings has
been observed along the leading-edge primary vortex
cores. Two distinct forms of vortex breakdown have been

documented experimentaUy I. The first form is the bubble

type and the second form is the spiral type. The bub-
ble type shows an almost axisymmemc sudden swelling
of the vortex core into a bubble, while the spiral type

shows an asymmetric, spiral, vortex filament followed by

a rapidly spreading turbulent flow. Both types are charac-
terized by an axial stagnation point and a limited region
of reversed axial flow. Much of our knowledge of in-

compressible vortex breakdown has been obtained from
experimental studies of pipe flows where both types of
breakdown and other types as well were generated and
documented 2-4.

The major effort of computational study of vor-
tex breakdown flows has also-been-focused on .iso-

lated swirling flows. For incompressible flows, quasi-

axisymmetric, bubble-type, vortex-breakdown flows were

" Professor. Eminent Scholm" imid Ominmm of Aeroq_ace

Engineering _ Asmcime Fenow AIAA.

Reaem'ch Associ_, Aerospace Engineering I_ Member
AIAA.

Senior Research Scientig. Compumtiomd Aerodymunics Brmch,

Associa_ Fellow AIAA.

computed using the Navier.Stokes equations s4. Three-
dimensional bubble and spiral vort_-breakdown flows

weze also computed for isolated swirling flows using
the flu-ee-dimensional Navier-Stokes equations in the

vorticity-velocity form or the primitive variables form 9"tl.

Interaction between a longitudinal vortex and a trans-
verse shock wave occurs in several flow applications

which includetransonic and supersonic flows over a della

wing or a strake-wing configuration at modea-ate to high

angles of attack, a supersonic inlet ingesting a vortex,
and a supersonic combustor where fuel is injected in a

swirling jet m enhance fuel-air mixing Is-14. For delta
wings aad strake-wingconfigurations,vortexbreakdown

is an undesirablephenomenon since itproduces wing

stalLTherefore,itsoccurrenceneeds tobe delayedwith

passive or active control methods in order to increase
the wing performance at large angles of attack. For

a supersonic combustor, vortex breakdown is desirable
since it enhances mixing of air and fuel and stabilizes the
flame 1s.16. Therefore its occurr_ce needs to be enhanced

and conurolled.

For supersonicflows,quasi-axisymmetricbubble-type
vortex-breakdownt7-19and three-dimensionalbubble-type

and spiral-typevortexbreakdown2° forisolatedswirling

flows have been recendy computed by the presentau-

thors.Using compatible,inletboundary conditions,the
time-accuratesolutionsoftheunsteady,compressible,full

Navier-Stokesequationswere obtainedto study the ef-

fectsof Reynolds number, Mach number, swirlratio,

type of exit-boundaryconditionsand grid finenessand
distributionon the voctex-breakdownmodes for internal

and externalflows.Severalmodes of vortexbreakdown

which includetransientsingle-bubble,transientmulti-

bubble, periodicmulti-frequencymulti-bubble,quasi-

steady two-bubble cell and spiral-typevortex break-
downs have been obtained21. For lhree-dimensional

vortex-breakdown flows in a swirling,supersonicjet

flow, topologicalaspectsof the criticalpointsin the

vortex-breakdown region have been studiedand com-

pared with the availableexperimentalincompressible

vortex-breakdowntopology.

Recent experimental measurements 2z-26 of transonic

Copyright © 1993 by OmM Kmsdil. Publishedby The Americ_

Institute of Aerommics m_l _ea, Inc. with penmssion. I



flows mmnda 65 • swept-track, ended delta wing show
that shoek wave femmtm is likely to ecaa' mulememh

the leading-edge _ vmlex core. In cross-flow
planes perpendicular to the wing, the cross-flow beneath
_e pmmry vomx x-,=ches supmsmic speeds and a cross-
flow shock develops benemh the _ vortex similar
to the supersonic flow in a convergent-divergent nozzle.
These measurements also show that a transverse shock

"temina_g shock" which might cause prhnm3,-vortex-
coee b_kdown could develop in aa mmlogous mann_
to the shock that tmninates the two.dimemioml super-

sonic poc_ on m airfoil. A compkte reconmectio.
of the eu_e-dimensioml flow add on the delta wing in
this region was not possible experimentally :_"26. Cmn-
pumtional simulmions for u-ansonic delta-wing flows have
been developed by using the Euler equations_' n and
the thin-layer, Navier-Stokes equations:_. The Euler-
equations solutions were not capable of fully resolving
the flow in the tennina_g shock region and the thin-
layer, Navier-Stokes solution did not address that region.

In the present paper, we consider the u'ansonic flow
around a 65 ° sharp-edged, cropped delta wing at an angle
of attack of 20°, a Mach number of 0.85 and a Reynolds
number of 3.23 x 106. The purpose of the present numer-
ical simulation and study is to constrict the flow field
over the wing with particular emphasis of the vortex
core-terminating shock mu_raction region. The laminar,
unsteady, compressible, full Navier.Stokns equations are
solved accurately in time with an implicit, flux-difference
splitting, finite-volume scheme. The computations are
carried out with time-accurate stepping on two O-H grids;
a coarse grid and a fine grid. Both grids cmsist of
125 ×85 x 84 points in the wrap-around, normal and axial
directions, respectively. The main difference between the
coarse and fine grids is the distribution of the grid points
normal to the wing surface within the thin viscous layer
(to be discussed later on).

HIGHLIGHTS OF FORMULATION
AND COMPUTATIONAL SCHEME

The conservative formof the dimensionless, unsteady,
compressible, full Navier-Stokes equations is used for the
formulation of the problem. The equations am written in
terms of the time-independent, body-conformed coordi-
nates _i,_- and _3 (Ref. 18).

The implicit, upwind, flux-difference splitting, finite-
volume scheme is used to solve the unsteady, compress-
ible, full Navier-Stokes equations. The scheme uses the
flux-difference splitting scheme of Roe which is based
on the solution of the approximate one-dimensional, Rie-
mann problem. In the Roe scheme, the inviscid flux dif-
ference at the interface of computational cells is sprit into
two parts; left and right flux differences. The splitting is
accomplished acc(ading m the signs of the eigenvalues of
the Roe averaged-Jacobian matrix of the inviscid fluxes
at the cell interface. The smooth flux limiter is used to
eliminate oscillations at locations of large flow gradients.

The viscous- and heat-flux turns are linemized in time

and the ctms-derivative trams me neglected in the im-

plicit operator and remitted in the explicit tram. The vis-
cous tmns are differeaced using a _ acmrate
ceamd diffmmcing. The resulting diffmence equation is
appmxinmlely factored and is solved in three sweeps in
the _,_2 andS3 directions. The Cemlaamk_ scheme
is coded in the computer program 'q_'NS3D"whichisa
modified versim of the CFL3D-code.

COMPUTATIONAL RESULTS

A 65° swept.bacL stueo4xtged, cropped _m wing
with zero thickness is com/dered for the computational

mlmions. The cropping ratio (_p leage_m-chord
tengm) is 0.15. The wing angle of auack is 20°. and the
fmememn Math number aad Reynolds numbe_ Cmmed
on the mot-chord length) are 0.85 and 3.23xi0 s, re-
spectively. The reason behind the wment, selecug flow
conditions is because of theuncemintyof the existing

experimental data2z_ about the slructu_ of the down-
stream flow field of the kading-edgc vom, x _ The
experimental dam shows that a supersonic flow region
appears on the upper wing surface nero"the plane of sym-
meury. This flow region is terminated by a uansvers_
shock 0mown as a tmninating shock) in a similar way to
the shock that terminams a supenonic pocket on a super-
critical airfoil 23.

Grid:

An O-H grid of 125x85x84 in the wrap-around,
normal and axial directions, respectivel_ is used for the
computational simulation. The computational domain
extends two-chord length forward and five-chord length
backward from the wing trailing edge. The radius of the
computational domain is four-chord ienglh. Two grids
have been conslructed using the same number of grid
points. The first is called the coarse grid and the second
is called the fine grid. For the coarse grid, the grid points
in the cross flow planes have been distributed using a
Joukowski transfornmfion which produces a minimum

grid size, normal to the wing surface, that varies from
5x10 _ at the leading edge to 3x10 -2 at the plane of
symmetry. For the fine grid, the elliptical grid fines in
the cross-flow planes have been consu'ucted such that the
minimum grid size normal to the wing surface, stays
constant at 5 x 10_ from the leading edge to the plane
of symmeu'y. Figures 1 and 2 show three-dimensional
shape of the coarse and fine grids and a cross-flow plane
along with its blow-ups.

Time-accurate integration of the laminar, unsteady,
compressible, full Navier-Stokes equations has been ear-
ried out with At = 0.001 for the coarse grid and At =
0.0002 for the fine grid. The results showed that the
leading-edge vortex core passes through a terminating
shock which causes the vortex core to breakdown. More-
over, it is shown that the flow becomes unsteady behind

the terminating shock.



Validation of Surface Pressure:

Figure 3 shows a comparison of the computed, siren-

wise surface-pressure coefficient (C_) at different chord
stations for the fine and coarse grids with the experimen-
tal data of Erickson 3° (Re - 3.23 x I06) and Hanmann u

(Re = 2.38xI06 and 4.57×106). The computed results
are selected at t = 3.6. Obviously, the coarse-grid Cp-

curves do not show the suction-pressure peak conespond-

ingto the secondary vortex and the correct location of the

suction-pressure peak corresponding to the primary vor-

tex. The coarse-grid C?-curves are similar to those of the
Euler-equafions solution. Therefore, they are discarded
in this paper. The fine-grid Cp-curves show the correct
location of the suction-pressure peak corres_nding to the

primary vortex and the suction-pressure peak cot-respond-

ing to the secondary vortex. The fine-grid Cp-cerves at
x = 0.3, 0.6 and 0.8 are in fair to good agreement with

the experimental data. For x = 0.9, the fine-grid Cp-

curve shows a substantial, rapid increase in the pressure
coefficient (a decrease in the suction pressure). Figure
4 shows the total-Mach contours and the streamlines in

cross-flow planes at the chord stations of x = 0.3, 0.6, 0.8,
0.9, 0.97 and 1.0. At x = 0.3, 0.6 and 0.8, the total-Mach
contours show an oblique shock under the primary vortex

and a smallsubsonic region to the right of the shock. The
streamlines show the secondary separation to the right of

thc shock. This separation is due to the shock interac-
tion with the surface boundary-layer flow and is also due

to the adverse, spanwise pressure gradient created by the

primary vortex. At x = 0.9, the shock under the primary
vortex becomes weak as observed in the total-Mach con-

tours and the primary-vortex size increases. At x = 0.97,
the shock under the primary vortex disappears and the

primary vortex diffuses and reduces to a repelling focus

as shown by the sffeamlines. At x = 1.0, the repelling
focus becomes a repelling fine. The details of the flow
structure shown at x = 0.9, 0.97 and 1.0 indicate that

the primary vortex is going through a breakdown mode
which is caused by a transverse shock (terminating shock)
between x = 0.8 and x -- 0.9.

Terminating Shock:

To show that a terminating, transverse shock exists

and has been captured computationally, the static-pressure
contours and total-Mach-contours on two planes are corn-

puled and displayed in Fig. 5. In this figure, the static-
pressure contours are shown on the wing surface and

the plane of symmetry, and the totaI-Mach contours axe
shown on the third plane (k = 3) above the wing (in the
viscous layer) and on the plane of symmetry. The plane

of symmetry contours clearly show the location, shape

and strength of the terminating shock. Moreover, the
Mach contours show that a substantial supersonic pocket

(bounded by the sonic fine and terminating shock) ex-

tends from the wing vertex to the shock location of x =
0.83, which is in good agreement with the experimental
data 3°, where the shock is located at x = 0.84. The corn-

puted results show that the shock is a normal shock with

a height of 0.4 which is equal to one-haft the wing span.
In the spanwise direction, the shock foot print (shown on

the Mach contours at k = 3) extends beyond the primary-

vortex location. A A-type shape of the shock-system foot

print, which on one side of the wing, comi_ of the ter-

minating shock and the shock under the primary vortex
that runs along a ray plane from the wing vertex, is seen
on the Math contours at k = 3.

Figure 6 shows the position of the ray lines from the

wing vertex (which are marked by the letters A-H) and

the static-pressure curves along these lines. The static-
pressure curves show the spanwise locations of several

points on the foot-print line of the terminating shock. The
terminating shock is clearly seen to run in the spanwise

direction from the plane of symmetry to the wing leading
edge. It reaches its highest strength from the location of

the primary vortex to the wing leading edge (from line

E to line H).

Vortex-Breakdown Structure:

Having established the shock system that consists of

the shock under the primary vogtex and the terminating
shock, the focus is directed on the structure of the flow be-

hind the terminating shock. In Fig. 7, we show the total.
Mach contours and streamlines on a ray plane at the 0.658

spanwise location, which passes through the leading-edge
vortex core. Blow-ups of the velocity vectors and stream-

lines on this verdcal plane arc also shown in Fig. 7. The

streamlines figures clearly show a two-bubble cell vortex
breakdown. This is a typical three-dimensional vorlex-
breakdown mode which consists of an attracting saddle

point (fi'on0 a repellingsaddle point (rear), an attracting
focus (top) and a repelling focus (bottom). Such a break-
down mode is similar to the one which was captured for

an isolated supersonic vortex in an unbounded domain
in Refs. 20 and 21. The location of the attracting sad-

dle point is at 0.97 along the ray line, which corresponds
to 0.87 along the axial direction. The attracting focus

point is characterized with spiralling-in streamlines and
the repelling focus point is characterized with spiralling-
out streamlines. The Mach contours show that the front

surface of the vortex-breakdown bubbles is enclosed by a

hemi-spherical shape-like shock surface. Figures 12 and
13 show details of the flow structure on the wing plan

view, on the plane of symmetry and on the ray plane at

the 0.658 spanwise location (marked as J = 16 on Fig. 13).

These figures and discussion give a complete construction
of the flow structure including the shock system and its

interactionwith the leading-edgevortex core which pro-
duces vortex-breakdown of the two-bubble-cell mode.

Unsteadiness of the Vortex-Breakdown:

The computations have been carriedout with time-
accurate stepping beyond t = 3.6. Figures 8-11 show the
results at t = 5.52. These results show that the terminating

shock moves in the upslzeam direction and so is the



two.bubble-cell vortex breakdown behind the _ndnming

shock. F'qlure 8 sbuws that the repelling focus is at x =

0.88 instead of x = 0.97 (Fig. 4). Figure 9 shows that

the terminating shock in the plane of symmelry is at x =

0.685 instead of x = 0.83 (Fig. 5). The shock _ in

height and its thickness increases. Figure 10 shows that
the size of the two-bubble cell vortex-bre_down region

increases in comparison with the size at t = 3.6 (Fig. 7).

Upsu'eam of the re'mirroring shock the flow stayed steady
without any change.

Beyond the lime t = 5.52, the upstream shock motion

stopped and the modon reversed its direction to the down-
stream. The computations were not carried out beyond

this instant due m its impeding cost. The unsteadiness of

the terminating shock and the vortex-breakdown region
behind it have also been observed experimentally by Ban-
nik and Houtmann 23. They also observed that the flow

upsU_am of the terminating shock stayed steady without
any change. These experimental obseHrations undoubt-

edly support and validate our computational results.

CONCLUDING REMARKS

The laminar, unsteady, compressible, full Navier-
Stokes equations are integrated time accurately using the

implicit, upwind, flux-difference splitting, finite-volume
scheme to study and consu'uct the flow field slrucmre of
a transonic flow around a 65 ° sharp-edged, cropped-delta

wing. A A-shock system, which consists of a ray shock

under the primary vortex core and a transverse terminat-
ing shock, has been captured. Behind the terminating

shock, the leading-edge vortex core breaks down into a
two-bubble cell type. The terminating shock and the vor-
tex breakdown region behind it is time dependent and

appears to be oscillatory. The flow field ahead of the ter-
minating shock stays steady without any change. This is

consistent with the fact that the supersonic pocket along
with the wxrninating shock do not allow disturbances to

propagate upstream. The present results have been vali-

dated using the available experimental dam and they are
in good agreement The present paper gives a complete
construction of the flow field over the wing surface and

in particular the structure of the flow at the terminating
shock and behind it.
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ABSTRACT

Thre_-dimensional, supersonic vortex-breakdown prob-
lems in bound and unbound domains are solved. The

solutions are obtained using the time-accurate integra-
tion of the unsteady, compressible, full Navier-Stokes

(hiS) equations. The computational scheme is an implicit,

upwind, flux-difference splitting, finite-volume scheme.
Two vortex-breakdown applications .are considered in the

present paper. The first is for a supersonic swirling jet
which is issued from a nozzle into a supersonic uniform
flow at a lower Maeh number than that of the swirling jet.

The second is for a supersonic swirling flow in a config-
ured circular duct. In the first application, an extensive

study of the effects of grid fineness, shape and grid-point
distribution on the vortex breakdown is presented. Four

grids are used in this study and they show a substantial

dependence of the breakdown bubble and shock wave on
the grid used. In the second application, the bubble-type

and helix-type vortex breakdown have been captured.

INTRODUCTION

Longitudinal vortex/transverse shock-wave interac-
tion is a complex flow phenomenon which develops m

several external and internal flow applications. For exter-
nal flows, the transonic flow around a delta wing in the

high-angle-of-attack range 1_ and the transonic and super-

sonic flows around a strake-delta wing configuration in
the moderate to high-angle-of-attack range 3 are some of

the applications. Vortex-breakdown usually occurs behind
the transverse shock wave over the delta wing resulting in
a loss of lift. Such a breakdown is undesirable and flow-

control methods need to be developed to eliminate the

vortex breakdown. For internal flows, the supersonic in-

let ingesting a vortex and the supersonic combustor where
fuel is injected in a swirling jet to enhance fuel-air mixing

are some of the applications. Vortex breakdown behind
the transverse shock wave in these applications is desir-
able since it enhances mixing and stability of the flame 't-7,

and henco its occurrence need to be controlled for opti-

mum performance.

*Professor _d _ Scholm', Dept. of Mechanical Engineering

and Medumics, Associate Fellow AIAA.

**Graduate R_em'ch Al$istant, Member AIAA.

***C.noup Lead_, _onal Aerodymmlic$ Branch, Associate Fellow
AIAA.

For such lx_bkms, computational schemes are needed
to study, predictand control vortex-shock interaction in-

cluding vmlex breakdown. Unfortunately, the literature
lacks this type of analysis with the exception of the pre-
liminary work of Liu, Krause and Menne s, Copening and

Anderson 3, Delery, et al.4 and Kandil and Kandil 9.

The first time-accurate NS solution for a quasi-

axisymmetric supersonic vortex-breakdown was devel-
oped by _mdil, lQmdil and Liu in Ref. I0. A supersonic

quasi-axisymmetric vortex flow in a configured circular
duct was considered. The time-accurate solution of the

unsteady, compressible NS equations was obtained us-
ing an implicit, upwind, flux-dilIen-nce splitting finite-
volume scheme. A shock wave was generated near the

duct inlet and unsteady vortex-breakdown was predicted
behind the shock. The predicted flow was character-

ized by the evolution, convection and shedding of vortex-
breakdown bubbles. The Fader equations were also used

to solve the same problem. The Euler solution showed
larger size and number of vortex-breakdown bubbles in

comparison with those of the NS solutions. The time-
accurate solution was carried out for 3,200 time steps

which were equivalent to a dimensionless time of 16.

Only one value of Reynolds number of 10,000 was con-
sidereal in Ref. 10.

In a later paper by Kandil, Kandil and Liu 11, the

study of this flow was extended using time-accurate com-

putations of the NS equations with a fine grid in the
shock-vortexinteractionregion and for long computa-
tionaltimes. Several issues were addressed in that study.

First, the effect of Reynolds number on the temporal evo-

lution and persistence of vortex-breakdown bubbles be-
hind the shock was shown. In that stage of computations,
the conditions at the downstream exit were obtained by

extrapolating the components of the flowfield vector from
the interiorcellcenters. Although the flow was super-

sonic over a large portion of the duet exit, subsonic flow

existed over a small portion of the exit around the duct

centerline. Therefore, selected flow cases were computed

using Riemann-invarianbtype boundary conditions at sub-

sonic points of the duct exit. The effect of swirl ratio at

Copyright © 1993 by Oumm Kandil. PubEshed by The AmencJm

Institute of AeroMtmcs and Astronatmcs, Inc. with permiuion.



the duct inlet was also investigated. Recently, the critical
effects of the downstream boundary conditions on the su-

personic vortex-breakdown was extensively investigated
by the same authors12 for both internal and external flows.

In Refs. 10-12, the present anthcgs assmned the flow
quasi-axisymmetric and the NS equations were solved
using the fiuee-dimensional solver "FTNS3D" by fot_-
ing the components of the flowfield vector to be equal
on two axial planes in close proximity of each other.
Quasi-axisymmetric solutions are une-mder of magnitude
less in computational cost than the _ng three-
dimensional solutions, and they stiff provide substantial
physical understanding of the supersonic vortex break-
down. At this substantially reduced computational cost,
we were able to study the effects of Reynolds number,
swirl ratio and downstream exit-boundary conditions us-
ing time-accurate stepping. However, the previous exper-
imental studies for both incompressible Is-is and super-
sonic vortex breakdown ]6 showed that the flow is three
dimensional.

Hence, we consider the three.dimensional solution
of the NS equations to realistically simulate the vor-
tex breakdown problem. The computational solution of
two main vortex-breakdown problems are presented m
this paper, the first is for vortex breakdown of a super-
sonic swirling jet issued from a nozzle into a supersonic
uniform flow at a lower Mach number than that of the

swirling jet, and the second is for vortex breakdown of a
supersonic swirling flow in a configured circular duct. In
the first problem, an extensive study of the effects of grid
fineness, shape and grid-point distribution on the break-
down bubble is presented. Four grids have been used in
the study, and they show a substantial dependence of the
breakdown bubble and shock wave on the grid used. In
the second problem, the time-accurate solution shows two
modes of supersonicvortex breakdown;a bubble type
and a spiral type.

HIGHLIGHTS OF THE FORMULATION
AND COMPUTATIONAL SCHEME

The conservative, unsteady, compressible, lami-
nar full Navier-Stokes equations in terms of time-
independent, body-conformed coordinates _J, _2 and _3
are used to solve the problem. The equations are given
in ReL 11 and hence they are not shown here. Along
with these equations, boundary conditions are specified
at the computatioual-domain inlet' side wall and down-
stream exit. The boundary conditions are presented in the
next section. The initial conditions will also be presented
in the next section.

The computational scheme used to solve the unsteady,
compressible full NS equations is an implicit, upwind,
flux-difference splitting, finite-volume scheme. It em-
ploys the flux-difference splitting scheme of Roe which is
based on the solution of the approximate one-dimensional
Riemann problem in each of the three directions. In the

Roe scheme, the inviscid flux diffet_tce at the interface

of a computational nell is sprit into left and right flux dif.
fe_nces. The splitting is accomplished acctading to the

signs of the eigonvalues of the Roe averaged-Jacobian
matrix of the inviscid flux at the cell interface. The

smooth limiter is used to eliminate oscillations in the

shock gegion. The viscous and heat-flux tmns ere lin-
earized and the crib-derivative terms of the viscous Ja-

cobians are dropped in the implicit operawr. These terms
arediffenmcedusing second-4xder spatially accurate cen-
Iral differ, ricing. The resulting difference equation is ap-
prox/matcly factm_ and is solved in three sweeps in the
_I, _2 and _3 directions. The scheme is coded in the
computer program which is called "FTNS3D".

COMPUTATIONAL RESULTS AND DISCUSSION

I. Three.Dimensional Vortex Breakdown of

a Supermuk Swirling Jet

A supersonic swirling jet at a Mach number of Mj =
3.0 is issued hem a nozzle into a supersonic uniform flow
at a Mach number of M_ = 2.0. The freestream Reynolds
number, P_, is 296,000. The nozzle-exit radius is the
characteristic length and the length of the computational
domain is 7.0 dimensionless units. The purpose of the
present cmnputational case is to simulate the flow of the
experimental study of Ref. 16. It was reported in Ref. 16
by Metwally, et al. that it was difficult to detect any
vortex-breakdown bubble behind the formed shock in the

swirling jet flow and that the shock was oscillating around
a mean position. For the present computational study, it
is decided to use four types of structured grids to solve the
unsteady, compressible NS equations accurately in time.
The cross.section of the computational domain is taken as
a square section for three types of grid which are called
Grid type I, 2 and 3. For the fourth grid, Grid type 4, a
circular section is used. For Grid types 1, 2 and 3, the
length of one-half the square-section side is 3.5 units and
for Grid type4,theradiuslength of the circularsection
is 3.5 units. A time step of 0.02 is used for all the four
types of grids.

1.1 Boundary and Initial Conditions: The inflow bound-
ary conditions are adapted from the limited experimen-
tal data ofRef. 16. Unfortunately, the experimental data
available in Ref. 16 are given along one diameter only
of the circularsection. The profiles of the experimen-
tal data are not symmetric with respect to the diameter
center point. To produce three-dimensional profiles from
the experimental dam, two methods are used. In the first
method, the asymmetry of the experimental profiles is
maintained by assuming the profiles on the right-hand
side of the initial cross-section to be the same as those of

the upper half of the experimental dam and the profiles
on the left-hand side of the initial cross-section to be the
same as those of the lower halfof the experimental data.
In the second method, the initial cross-section profiles are
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assumedtobequasi-axisymmeUicandaresetequaltothe
profilesof theupperhalfof theexpso.mentaldata.The
average swirl ratio of the asymmetric profiles is 0.2 and
the swirl ratio of the quasi-axisymmet_ profiles is 0.22.

The experimental data are used for r < 1, and for 1 <
r _ 3.5 uniform wind-runnel conditions corresponding to

M= = 2.0 are used. Figures 1 and 2 show the generated
asymmeu'ic and quasi-axisymmetric distributionsof the
axial velocity, u, tangential velocity v, density, p. and

pressure, p.

The boundary conditions on the outer boundaries of

the computational domain are assumed to be uniform
conditions corresponding to M_ = 2.0.

The outflow boundary conditions at the exit of the

computational domain are obtained by extrapolating all
the flowfield components from the interior cell centers
at the exit. This is justified since the experimental data
of Ref. 16 show that the flow becomes supersonic a few
radii downstream of the shock/vortex interaction region.

The initial conditionsintheentiredomain correspond
to freestream conditions at M_ = 2.0. Hence, the present
flow case simulates a sudden discharge of a swirling

supersonic jet from a nozzle into a uniform supersonic
flow.

1.2 Grid Type 1: A rectangular grid of 210x51x51
points in the axial (x direction) and cross-flow directions
(y and z directions), respectively is considered. The grid
points are clustered in the axial direction rear the inflow
boundary and near the vortex-core axis. The minimum
grid size is 0.057 in the y and z directions and 0.014"/
in the x direction. Figure 3 shows a side view and a
cross-flow plane of the grid.

In Fig. 4, snapshots of the streamlines on a horizon-
tal plane passing through the computational domain axis
and the totalMach contours on the same plane are given
at selecteddimensionless times. At t ffi 2.0, the Mach
contours show the existence of a strong shock wave at
the centerline. The shock is formed due to the mismatch

between thestaticpressuresof thesupersomc swirling
jet and the supersonic uniform surrounding flow. Behind
theshock wave, thestreamlines indicate the existence
of a reversed flow region. At t = 3.0, the re.circulating
bubble-flow grows in size and moves upstream. The for-
mation of a two-bubble cell is clear. The Mach contours
show thatthe shock also moves upstream ahead of the
two-bubble cell. At t = 4.0 and 5.0, the shock wave and
the two-bubble cell still move upstream while the bubbles
are growing in size. The bubbles reach their maximum
size at t = 5.0. The snapshots of the solution for t > 10.0
show that the bubble-shnck system is quasi-steady and
oscillating arounda mean axial location. The maximum
changein thebubblesizeislessthanI0%. The axialve-
locityrecovers its supersomc values at the exit boundary,
and hencetheuseofextrapolationboundaryconditions

is justified.

1.3 Grid Type 2: This grid consists of 145x61x61
pointsintheaxialandaon.flow directions,mepectively.
The grid pointsateredis_butedto obtain better solution
of the vortex core and the vortex-shock interaction region.

The minimum grid size is 0.024 in the y and z directions
and 0.014 in the axial direction. Figure 5 shows a side
view and a cross-flow plane of the grkL

In F_g. 6, mapsbots of the streamlines and total Mach
contours on a horizontal plane passing through the com-

putational domain axis me given at selecteddimension-
less times. At t -- 2.0, a two-bubble cell is formed behind

a sharply obfique conical shock. The bubbles sizes are
larger than those of Grid type 1 at the same time level.
At t = 3.0, the two-bubble cell grows in time and moves

upstream along with the shock wave. Again, the bubbles
are larger in size and closer to the inflow boundary than
those of Grid type 1. Moreover, it is interesting to nodce
that the bubbles me longerinthe axial direction than their
length in the lateral direction in comparison with those of
GridtypeI. Itshouldbe notedherethatthenumbe_

ofgridpointsaroundthecomputationaldomainaxisfor
thepresentgridislargerthanthoseofGridtype1 and
the number of grid points in the axial direction is less
than those of Grid type 1. At t = 4.0, the two-bubble cell
moves downstream, another small bubble appears and the
shock spfits into two shocks; a weak shock which is fol-
lowed by a _g shock surrounding the bubbles. At t
= 5.0, the shock shape changes to become mote oblique
and the two-bubble cell grows slightly. As the solution is
advanced in lime, it is observed that continuous changes
in the bubbles size, shape and location occur with larger

amplitudes than those of Grid type 1. For t _ 10.0, the
bubbles show highly unsteady flow with an oscillating
shock wave.

1.4 Grid Type 3: In this grid, the number of grid points

iskeptthesameasthatofGridtype2.The gridpointsare
redistributedintheaxialandcross-flowdirections.Inthe

axialdirections,90 gridpointsareusedintherangeofx
= 0 to2.0,incomparisonwith71 gridpointsinGridtype
2.The minimum cellsizeintheaxialdirectionis0.0084.

Inthecross-flowplane,thegridpointsareredistributed
suchthatthegridaspectratiodoesnotexceed4.0.Figure
7 showsthegridand Fig.8 showstheresults.

The resultsshow thatatt= 2.0,a smallbubbleis

capturedoffthecomputationaldomain axis.Lateron,
att= 4.0,thesmallbubbledisappears.Anotherbubble

is captured at t = 6.0 and it also disappears later on.
For t > 8.0, no more bubbles are captured. A strong,
almost-normal shock is captured around the axis. It is
located a tittle more downstream from the inflow section

in comparison with thatof Grid type2.

Next, it is decided to use the quasi-axisymmeu'icini-
tial profiles (Fig. 2) which have higher swirl ratio than
those of the asymmcmc initialprofiles (Fig. 1). The re-

suits are shown in Fig. 9. The results show the formation
of a smalltwo-bubble cell The bubblesshapechanges



slowly with time and the shock oscillates with very small
amplitude mound a mean position which is a little more
downstream than that of the previous case and the case •

of Grid type 2.

I.._ Grid Type4: Acirculargridmnsistingof145x61×
49 points in the axial, radial and circular directions, re-
spectively, is used. The grid points sre clustered around
the axis for a good resolution of the vo_x core and
around r = 1 for good resolution of the shear layer be-
tween the swirling jet and the uniform _ flow.
In the axial direction, the grid points are distributed as
those of Grid type 3. The circular grid has the advan-
tage of offering better resolution near the axis, where it
is needed. Moreover, with the circular grids, the nmnber
of grid points along a diameter in the cross-flow plane
is doubled without increasing the total number of grid
points, in comparison with the previous grids of square-
section cross-flow planes. Figure I0 shows the circular
grid.

As in the case of Grid type 3, two sets of initial
profiles; namely the quasi-axisymmetric and asymmetric
profiles, are used with this grid. As with Grid type 3
and for the asymmetric initial profiles, a small bubble is
formed behind the shock and disappears after a few time
steps.

Figure l I shows snapshots of the _lines and
Mach number contours for the quasi-axisymmetric initial
profiles. The results show the formation of a_multi-
bubble vortex breakdown behind the cenlral strong part of
the shock system. A two-bubble cell is then established
and persists for the rest of the computational time. The
relative size of the two bubbles is continuously changing
and the global picture is looked at as a quasi-steady one.

This study exclusively shows why it was very difficult
to see any vortex-breakdown bubbles as was reported in
Ref. 16. It is understood now in view of the results of

the four grids that the size of the bubbles are either very
small to be seen for quasi-axisymmetric initial profiles or
they are transient bubbles for asymmetric initial profiles.

If. Three-Dimensional Supersonic Vortex
Breakdown in a Configured Duct

The computational domain consists of a configured
circular duct with a total length of 2.9 dimensionless units,
where the duct radius is used as a characteristic length.
The duct consists of a constant diameter cylindrical por-
tion of radius one followed by a divergent portion which
is intended to stabilize the formed shock wave, a constant

cylindrical part and finally a couvergent-divergent nozzle
which is intended to accelerate the exhaust flow to su-

personic speeds. The grid consists of 200×51 ×49 grid
points in the axial, radial and circumferential directions,
respectively. The grid points are clustered near the inlet
section in the axial direction for a good resolution of the
shock and the shock/vortex interaction region, and in the

crms-flow plane around the duct axis for a good resolu-
tim of the von_ ram. The gird points are also clnstered
near the duct walls for a good resolution of the bound-
ary lays. The minimum cell size is 0.002. Fq;ere 12
shows the computational gid. The f_emeam conditions

to Mec = 1.75 and Reynolds ntunbet of 105.

H.1 Boundary aad Initial Conditions: The initial pro-
file for the tangential velocity is given by

--- l--exp -- (1)
U= r

where U= = 1.74, r= - 0.2 and k_ = 0.1. The max-

imum F_'., swirl ratio _, is at • = 0.224 and its value is
kept at _.32. The radial velocity, _v, at the initial station
is set equal to zero and the radial momentum equation is
integrated to obtain the initial p_.ssm'e profile. Finally,
the density p is obtained firom the definiu'on of the speed
of sound for the inlet flow. With these compatible set
of profiles, the computations are carried out accurately in
time with At = 0.0025 for two computational applica-
tions. The duct-wall boundary conditions follow the typ-
ical Navier-Stokes solid-boundary conditions for the first
case. For the second case, inviscid duct-wall boundary
conditions are used to reduce the effect of the boundary-
layer separation on the vortex breakdown process. The
downslremn exit-boundary conditions are obtained by ex-
uapolating the flowtield components from the interior cell
centers at the exiL

The.initial conditions correspond to stagnation condi-
tions throughout the interior computational domain.

H.2 Viscous Duct-Wall Boundary Conditions: Figure
13 shows snapshots of the solution at selected time levels.
At t = 2.0, a small recirculating region is formed behind
the strong normal part of the shock wave. Two stagna-
tiou points are n_:ognized along the duct axis. The total
Mach number contours show the position of the shock
front near the inflow section and the position of the re-
circulation zone behind the shock wave. As the com-

putations is advanced in time, the bubble size grows in
the axial and radial directions and the shock-bubble sys-
tent moves downstream. At t = 3.5, it is noticed that the
bubble size grows and the shock wave is deformed ac-
cordingly. The solution is quasi-axisymmetric as shown
by the streamlines and Much number contours. Starting
at t = 4.0, the bubble size grows in the lateral direction,
moves upstream towards the inflow boundary pushing the
shock wave upsueam..Small flow asymmetry is also no-
ticed. For t> 5.5, another phase of the solutionhistory

develops, where a reversed normal shock is formed inside
the vortex-breakdown bubble (see Match contours at t =
6.0). The normal shock wave turns the reversed flow to
subsonic. As the computations advance in time, the bub-
ble system starts to move downstream towards the duct

exit with a new recirculating region formed behind the
shock wave. The flow becomes quite asymmetric.
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At t = 11.5, as the computations advance in time,
some of the features noticed experimentally for incom-

pressible vortex flows in pipes could be recognized; e.g.,

the asymmetric vortex breakdown seen at t = 11.5. The
streamlines clearly show the spiral-type of vortex break-

down and the asymmetric shedding of the vortex Ixeak-
down bubbles. It should be noted here that such phe-

nomenon was not capua'ed using the qmsi-axisymmetric

assumption in Ref. 11 by the present authors. The shed-

cling of the vtxtex-breakdown bubbles continues as new
bubble systems were formed behind the shock wave. At
t = 16.5, the shedding of two asymmetric bubbles can be

seen and a two-bubble system is formed upsu'eam along

with a very small recirculating region just downstream
of the central part of the shock wave. At t = 19, it is
observed that two bubbles merge together while they are
conv_tex:land shed.

An impotlant parameter affecting the flow in the duct
is the interaction of the shock with the boundary-layer

flow on the duct wall. This causes the separation of

the wall boundary layer, as can be seen at t = 31, 42
and 43. The Mach number contours show the separation

of the boundary as a result of the interaction with the
shock wave, and the streamlines show the reduction in the
vortex-breakdown-bubble size as a result of the boundary-

layer thickening. The shedding of the inclined vortex
rings shown at t = 33 is similar to the spiral type of
vortex breakdown, where the upper part of the vortex

rings rotates in the clockwise direction and the lower part
rotates in the opposite direction. A new vortex ring is
formed behind the shock while the spiral-like system is

moving downstream.

As the solution is advanced in time, the size of the

breakdown region is reduced in the radial direction as
a result of the boundary-layer thickening. An interesting
breakdown mode is shown at t = 38.5 where a bubble-type

vortex breakdown followed by a spiral-type is formed

downstream of the shock wave. This phenomenon was
observed in the experimental studies of Sarpkaya t3 and

has never been captured computationally.

The reduction of the breakdown-region size continues
with the advance in the time as can be seen at t = 41, 42

and 44. At t = 46, no recirculation zone is observed

and the vortex-breakdown system is dissipated totally.
It is also observed that the shock-wave system moves

continuously in the downstream direction as of t > 31.

II.3 Inviscid Duct-Wall Boundary Conditions: The

effect of the shock/boundary-layer interaction at the duct

wall is further investigated by treating the duct wall as an
inviscid wall. At t = 43.0, inviscid-wall boundary condi-

tionsare applied at the duct wall with all the other bound-
ary conditions remainingthe same. Samples of the results

are shown in Fig. 14. At t = 43.5, the vortex-breakdown
bubbles are recovered and the shock wave becomes nor-

mal to the duct wall. The shedding of the vortex rings
continues as the solution is advanced in time as can be

seen at t = 45.5, where the vortex rings are recognized.

It is also noticed that the vortex-breakdown bubble size
starts to _ in the radial direction.Further increase

inthebreakdown-regionsizeisnoticedatt= 47. Itisalso

noticedthattheposition of the shock wave with _t to
the duct inlet is fixed while the shape of the central part

is continuously changing according to the shape of the
bubblesbehind the shock. The shedding of the vortex-

breakdown bubblescontinuesin an asymme_c form as

can be seen att - 63, 69 and 72.5. Itisinterestingto

noticethatthe vortex-breakdownsystem survivesand is

not dissipatedas inthe case of viscousduct wail. The

computationsisadvanced untilt = 75 withoutany sign

ofdissipationofthevortex-breakdown-bubbles.Itiscon-
cludedthatthedistm'bancescausedby the wallboundary-

layer separation are the reason behind the disappearance
of the vortex-breakdown system in the case of viscous

duct wall. This might be caused by the pressure gradi-
ents resulting from the change in the vortex-core outer
boundaries.

Sarpkaya 13noti_d that the boundary-layer separation
and reversed flow occurred on the tube wall in the case

of a swirling incompressible flow in a divergent tube. He
suggested that the bubble pressure gradient caused by the

tube divergence and that caused by the vortex breakdown
are the reasons behind the separation. He concluded that
the viscous effects on vortex breakdown in robes are very

significant and that, because of the flow separation, a bet-
ter simulation of the vortex breakdown is not likely to

emerge from solving numerically the full Navier-Stokes

equations even if the problems of numerical instability
were to be solved. In the case of supersonic vortex break-

down, the problem is much mote involved because ofthe

shock/boundary layer interaction and the assumption of
inviscid walls seems to isolate the wall viscous effects.

CONCLUDING REMARKS

Three-dimensional, supersonic vortex-breakdown flows
in bound and unbound domains are simulated compu-

rationally using the time-accuratesolution of the un-
steady, compressible, laminar, full Navier-Stokes equa-
tions. Two main vortex-breakdown applications are con-

sidered in this paper. The first application is for a su-

personic swirling jet issued in a supersonic uniform flow
at a lower Mach number. This flow case was consid-

e_l earlier by Metwally and his co-workers in Ref. 16,

where it was reported that no vortex breakdown bubble
was seen behind the shock-wave system. A systematic

computational investigation was carried out using four

types of grids which ranged from coarse-to find-grid dis-
tributions and from rectangular to circular grid lines in

the cross-flow planes. It has been shown that the coarse

grid produceslarge vcctex bubbles and the fine girds pro-
duce either wansiem small vortex bubbles or quasi-steady

small vortex bubbles. Using the fine-grid results as the

ones closely representing the experimental flow case, it
is understood why Metwally, et 81.16 were not able to see



uny vor_t-breakdown bubble. The bubbles were either
small or small and transient. Moreover, this study shows

why previous investigators 17'n of incompressible vorex-
breakdown flows wee able to produce nume_ results

as_ngcome _ids (_ thanthe come 8_I esed in _
present paper) at low Reynolds numbers wh/ch were com-
parable to experimental results at high Reynolds numbers.
It is now understood that cem,se grids have made it pus-
sible to simulate experimental results at high Reynolds
number.

The second application is for a supersonic swirling
flow in a configured circular duct. Here, the duct-wall
boundary condiuons ere used once for a viscous wall
and another for an inviscid wall. With the viscous-wall

boundary conditions, it has been observed that the vor-
tex breakdown is Iransient and it has been dissipated by
the effect of separated flow from the duct-wall bound-
ary layer. However, during the transient formation of
vortex-breakdown flows, both the bubble-type and spiral-
type vortex breakdown are captured. Spiral-type vortex
breakdown was not captured in Ref. 11 by the present
authorsdue to the quasi-axisymmemc assumption used.
With the inviscid duct-wall boundary conditions, the vor-
tex breakAown is persistent and does not dissipate. The
three-dimensional relieving effect on the vortex break-
down modes is apparent from the present results when
they are compared with those of Ref. 11, where the quasi-
axisymmetric assumption has been used.
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Fig. 1. Three-dimensional asymmeuic initial flow profiles at x = 0.0 for
supersonic swirling jet from a nozzlc, M s = 3.0, Moo = 2.0 and

= 296,ooo.

Fig. 2. Three-dimensional quasi-axisymmctric initial flow profiles at

x = 0.0 for supersonic swirling jet from a nozzle, Mj = 3.0,
M_ = 2.0 and Re = 296,000.
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Streamlines and Mach contours :n a honzontal plane for a super-
sonic swirling jet using Grid type 1, M_ = 3.0, M_ = 2.0 and/_ = 296,000.
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Grid type 2 (rectangularfinegirdin the cross-flow plane),
145×61 x61 grid points in the axial and cross-flow plane, respectively.
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Fig. 6. Streamlinesand Mach contoursina horizontalplanefora super-

sonicswirlingjetusingGridtype2.Mj = 3.0,Moo = 2.0and
/_ = 296.000.
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Fig. 7. Grid type 3 (rectangular fine grid), 145x61 x61 grid points in the
axial and cross-flow plane, respectively.
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Streamlines and Mach contours in a horizontal plane for a super-

sonic swirling jet using Grid type 3 with asymmetric initial flow

profiles, M_ = 3.0, M_ = 2.0 and/_ -- 296,000.
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Fig. 9.
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Streamlines and Mach contours in a horizontalplane for a super-
sonic swirling jet using Grid type 3 with quasi-symmetric initial
flow profiles, Mj = 3.0, Moo = 2.0 and/Z, = 296,000.
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Fig. 10. Grid type 4 (circular fine grid), 14Sx61x61 gridpoints in the
axial and cross-flow plane, mslgctively.
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Streamlines and Mach contours in a horizontal plane for a super-
sonic swirlingjetusing Grid type 4, Mj = 3.0,M_ = 2.0 and P_ = 296,000.
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Fig. 13. Sn'eandines and Mach contours in a horizontal plane for a super-
sonic swirling flow in a circular duct, M_ = 1.75, _ = 0.32 and
/_ = 100,000, viscous w_ll.
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Fig. 14. Streamlines and Math contours in a horizontal plane for a super-
sonic swirling flow in a circular duct, Moo = 1.75, _ = 0.32 and
P_ = 100.000, inviscid wall.
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Abstract--Existing numerical simulations and physical aspects of subsonic and supersonic vortex-break-
down modes are reviewed. The solution to the problem of supersonic vortex breakdown is emphasized

in this paper and carried out with the full Navier-Stokes equations for compressible flows. Numerical
simulations of vortex-breakdown modes are presented in bounded and unbounded domains. The effects

of different types of downstream-exit boundary conditions are studied and discussed.

INTRODUCTION

At sufficiently high angles of attack, vortex breakdown has been observed along the primary

leading-edge vortex cores of a delta wing. Two distinct forms of vortex breakdown have been
documented experimentally [1]. The first form is the bubble type, and the second is the spiral type.

The bubble type shows a sudden, nearly axisymmetric swelling of the vortex core into a bubble;

the spiral type shows an asymmetric spiral vortex filament, which is followed by a rapidly spreading

turbulent flow. Both types of breakdown are characterized by an axial stagnation point and a

limited region of reversed axial flow. Much of our knowledge of vortex breakdown has been
obtained from experimental studies of incompressible flows in pipes, where both types of

breakdown (and other types as well) are generated and documented [2-4].

The major effort in the numerical studies of vortex-breakdown flows has been focused on
incompressible, quasi-axisymmetric isolated vortices. Grabowski and Berger [5] were the first to use

the incompressible, quasi-axisymmetric Navier-Stokes (NS) equations to study isolated vortex flow
in an unbounded region. Hafez et al. [6] solved the incompressible, steady, quasi-axisymmetric

Euler and NS equations with the stream function-vorticity formulation for isolated vortex flows.

They predicted vortex-breakdown flows similar to those of Garbowski and Berger [5]. Salas and
Kuruvila [7] solved the unsteady, quasi-axisymmetric NS equations in a straight circular pipe and

obtained steady, multiple-bubble vortex breakdown for the Reynolds number, Re (based on the

pipe diameter), range 100-1800. Menne [8] has also used the stream function=vorticity formulation
for studying unsteady, incompressible quasi-axisymmetric isolated vortex flows. Wu and Hwang [9]
used the stream function-vorticity formulation to study quasi-axisymmetric vortex breakdown in

a pipe. Their study focused on the effects of inflow conditions, wall boundary conditions and Re
on breakdown structure. They showed that the evolution of breakdown can be steady, periodic

or unsteady, dependent on the inflow velocity profiles and Re. Menne and Liu [10] integrated the

laminar, incompressible NS equations for breakdown of a vortex in a slightly diverging pipe. They
showed breakdown flow cases that are based on the purely quasi-axisymmetric and nonaxisymmet-

ric analyses. The results were in good agreement with the experimental results of Leibovich [4]. Spall

et al. [11] used the vorticity-velocity formulation of the incompressible NS equations to study
three-dimensional vortex breakdown. Breuer and H_inel [12] solved the unsteady incompressible

NS equations with a dual time-stepping, upwind scheme to study the temporal evolution of the
three-dimensional vortex breakdown. In Refs [11, 12], both types of breakdown (the bubble and

the spiral type) were predicted. Reviews of the physical and computational aspects of the

incompressible vortex breakdown have been presented by Krause [13, 14]. One of the most

important aspects of vortex breakdown, which Krause discusses in Ref. [14], is the effect of side-wall
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boundary conditions on the upstream or downstream motion of the breakdown point. Also, he

discusses different outflow boundary conditions.

Longitudinal vortex and transverse shock-wave interactions are typical phenomena that appear

in transonic and supersonic flows over strake-wing configurations at moderate to high angles of

attack, at a supersonic inlet as a vortex is injested and inside a supersonic combustor where fuel

is injected in a swirling jet to enhance fuel-air mixing [15-17]. For the strake-wing configuration,
vortex breakdown is undesirable because the stall phenomenon results; hence, its occurrence must

be delayed. On the other hand, vortex breakdown for the other two applications is desirable

because it enhances the mixing of air and fuel and stability of the flame [18, 19]; hence, its

occurrence must be controlled for optimum performance. Unfortunately, the literature lacks this

type of analysis, with the exception of the preliminary work of Liu et al. [29], Copening and

Anderson [21], Delery et al. [15], Kandil and Kandil [22] and Meadows et al. [23].

The first time-accurate, NS solution for a supersonic vortex breakdown was developed by Kandil
et al. [24]. A supersonic quasi-axisymmetric vortex flow in a configured circular duct was

considered. The time-accurate solution to the unsteady, compressible NS equations was obtained

with an implicit, upwind, flux-difference splitting, finite-volume scheme. A shock wave was
generated near the duct inlet and unsteady vortex breakdown was predicted behind the shock. The

predicted flow was characterized by the evolution, convection and shedding of vortex-breakdown

bubbles. The Euler equations were also used to solve the same problem. The Euler solution

predicted increases in both the size and number of vortex-breakdown bubbles, in comparison with
the NS solutions. The time-accurate solution was carried out for 3200 times steps, which was

equivalent to a dimensionless time of 16. A single Re value (10,000 based on the inlet radius) was
considered in that study [24].

In a later paper [25], the study of this flow was extended with time-accurate computations of

the NS equations with a fine grid in the shock-vortex interaction region and for longer
computational times. Several issues were addressed in that study. First, the effect of Re on the

temporal evolution and persistence of vortex-breakdown bubbles behind the shock was shown. In

that stage of the computations, the conditions at the downstream exit were obtained by
extrapolating the components of the flow-field vector from the interior cell centers. Although the

flow was supersonic over a large portion of the duct exit, subsonic flow existed over a small portion

of the exit around the duct centerline (CL). Therefore, selected flow cases were computed with
Riemann-invariant boundary conditions at the subsonic points of the duct exit. The effect of swirl

ratio at the duct inlet was also investigated.

Recently, the critical effects of the downstream boundary conditions on the supersonic vortex
breakdown have been investigated extensively by the same authors [26] for both internal and
external flows.

In the present paper, the numerical simulation of supersonic vortex-breakdown flows for
bounded and unbounded domains are reviewed. The effects of Re, swirl ratio and downstream-exit

boundary conditions are considered and discussed along with certain physical and numerical issues.

OVERVIEW OF THE FORMULATION AND COMPUTATIONAL SCHEME

The conservative, unsteady, compressible, full NS equations, in terms of the time-independent,

body-conformed coordinates _ _, _ 2 and _ 3 have been used to solve the problem. The equations are

given in Ref. [25] and are not shown here. With these equations, boundary conditions are specified
at the computational domain inlet, side wall and downstream exit. The downstream-exit boundary

conditions are presented and discussed in the next section. The initial conditions will also be

presented in the next section.

The computational scheme used to solve the unsteady, compressible, full NS equations is an
implicit, upwind, flux-difference splitting, finite-volume scheme. This scheme employs the flux-

difference splitting scheme of Roe, which is based on the solution to the approximate one-dimen-
sional Riemann problem in each of the three directions. In the Roe scheme, the inviscid flux

difference at the interface of a computational cell is split into left and right flux differences. The

splitting is accomplished in accordance with the signs of the eigenvalues of the Roe averaged-
Jacobian matrix of the inviscid flux at the cell interface. The smooth limiter is used to eliminate
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oscillations in the shock region. The viscous and heat-flux terms are linearized and the cross-

derivative terms of the viscous Jacobians are dropped in the implicit operator. These terms are

differenced with second-order, spatially-accurate central differencing. The resulting difference

equation is approximately factored and is solved in three sweeps in the _ t, _ and _3 directions.

The scheme is coded in the computer program "FTNS3D".

The quasi-axisymmetric solutions are obtained with the three-dimensional code by forcing the
flow-field vectors to be equal on two axial planes, which are in close proximity to each other.

Q.

Quasi-axisymmetric solutions reqmre 1 order of magnitude less in computational time than the
three-dimensional solutions. They still provide substantial physical understanding of the supersonic

vortex breakdown and the dominant parameters that affect it.

COMPUTATIONAL RESULTS AND DISCUSSION

Vortex Breakdown in a Configured Circular Duct

Figure 1 shows a configured circular duct with a short, straight cylindrical part at the inlet which
is followed by a short divergent cylindrical part until the axial length of 0.74 dimensionless unit,
where the duct inlet radius is the characteristic length. The divergence angle is 6° . The duct radius

is then kept constant and a convergent-divergent nozzle with a throat radius of 0.95 is attached.
The duct exit radius is 0.98 and its total length is 2.9. The divergent part of the duct ensures that

the formed shock stays in the inlet region. The overall configuration of the duct ensures that the

supersonic inflow becomes supersonic at the exit. As the computations will show, a small portion
of the duct exit flow near its CL becomes subsonic at certain times for the specified inflow

conditions. This configured duct has also been used by Delery et al. [15] for the Euler equation

computations of supersonic vortex breakdown to computationally model their experimental setup.
The NS solver uses a grid of 221 x 51 grid points on two axial planes, where 221 points are in

the axial direction and 51 points are in the radial direction. In the inlet region up to the 0.74 axial

station, 100 grid points are used; the other 121 points are used in the remaining part of the duct.

The grid is also clustered at the CL and the wall. The minimum radial grid size at the CL is 0.002.
The two axial planes are spaced circumferentially at a prescribed angle so that the aspect ratio of

the minimum grid size will be < 2. The present grid size and distribution resulted from initial studies

of their effect on the accuracy of the solution. The upstream Mach number is supersonic and is

kept at 1.75. The initial profile for the tangential velocity is given by

[ lv _k_ 1-exp-_ , (1)U_-r

where U_ = 1.74, rm =0.2 and ke=0.1. The maximum v/U_ (swirl ratio _) is at r =0.224. The

radial velocity w at the initial station is equal to zero, and the radial momentum equation is
integrated to obtain the initial pressure profile. Finally, the density P is obtained from the definition

of the speed of sound for the inlet flow. With this compatible set of profiles, the computations are

carried out accurately in time with At = 0.0025. The wall boundary conditions follow the typical

tin = 1.0
rth = 0.95 rex = 0.98

CL

I.|lltl

Fig. 1. Grid of the configured duct (221 × 51).

CAF _/5_N
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Fig. 2. Streamlines and Mach contours for swirlingflow with transient single-bubble breakdown:with
M_ = 1.75, fl = 0.32 and Re--4,000.

NS solid boundary conditions. These computations have been carried out on the CRAY 2 at NASA

Langley Research Center. The CPU time is 28/_s per grid point per iteration for the NS calculations.

Next, we present the results of the computational study on the effects of Re, exit boundary
conditions and swirl ratio.

Effect of Re

The effect of Re on the vortex-breakdown modes is studied by varying Re between 2000 and

100,000. The Re is based on the radius of the duct inlet. The swirl ratio is kept fixed at 0.32 and

the downstream-exit conditions are obtained by extrapolating all of the flow variables from the
cell centers at the exit.

For Re = 2000. a shock is captured at the duct inlet, but no vortex breakdown is detected. The
flow at the exit boundary is supersonic.

r _

Fig. 3. Streamlines for swirlingflowwith transient multibubblebreakdown; with M_ = 1.75,/J = 0.32 and
Re -- 20,000.



• 17

Fig. 4. Streamlines for swirling flow with periodic multifrequency, multibubble breakdown; with
M_ = 1.75, B = 0.32 and Re = 100,000.
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For Re = 4000, Fig. 2 shows snapshots of the streamlines and Mach contours of the solution.

For this Re, a single breakdown bubble is seen at t = 5 and is convected downstream as time passes.

This breakdown bubble is formed during the downstream motion of the inlet shock, which reaches

its maximum downstream displacement at t = 5. Later on, the shock moves upstream (as is seen

at t = 8) and the breakdown bubble is convected in the downstream direction. Thereafter, the shock

stays stationary at the inlet and no vortex-breakdown bubbles are formed behind the shock. This

swirling flow case shows a transient single-bubble breakdown flow.

For Re = 20,000, Fig. 3 shows snapshots of the streamlines and Mach contours of the solution.

These snapshots show a vortex-breakdown mechanism of evolution, convection, merging and

shedding of bubbles, and the inlet shock first moves downstream, then upstream and finally
downstream. Thereafter, the inlet shock becomes stationary, and no bubbles are formed behind

the shock. This swirling flow case shows a transient multibubble breakdown flow.

For Re = 100,000, Fig. 4 shows snapshots of the streamlines and Mach contours of the solution.
The streamline snapshots show multibubble vortex-breakdown evolution, convection, merging and

shedding. The time-accurate integration was carried out up to t = 200, and the solution showed

periodic multifrequency cycles of vortex-breakdown bubbles. An example of the merging of
vortex-breakdown bubbles of the same sign of vorticity is shown at t = 17. An example of the

Fig. 5. Enlargement of streamlines of periodic multifrequency, multibubble breakdown; with t = 84
and 87.
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convection and shedding of vortex-breakdown bubbles is shown at t = 25. In a comparison of the
streamline solutions at t = 25 and 89, the solutions are almost identical. This result conclusively

shows that the breakdown process is periodic. The Mach contours show the dynamics of inlet shock
motion. In the time range 3 _ t _<8, the inlet shock moves upstream toward the inlet, and its central

r = 0.81

= 301

t =45

= 66

P_ ',,.

'"'-t=78

Fig. 6. Streamlines and Mach contours for swirling flow with periodic multibubble, multifrequency
vortex breakdown; with Pb = 2p_, Ricmann-invariant boundary conditions, M_ = 1.75, _ = 0.32 and

Re = 100,000.
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portion moves outside the inlet section at t = 8. In the time range 8 _<t _<25, the inlet shock moves

downstream with corresponding evolution, convection, merging and shedding of breakdown
bubbles. In the time range 25 _< t _<45, the inlet shock maintains its motion in the downstream

direction at a slower rate than before, while another shock, which is downstream of the inlet shock,

appears and also moves in the downstream direction. The evolution, convection and shedding

= 0.6

-t-5 /

I

I t =45 ',

i

!

--t =66
i

i

i |

Fig. 7. Streamlines and Mach contours for swirling flow with transient multibubble vortex breakdown;
with dp/_x = c, Riemann invariant boundary conditions, M_ = 1.75, fl = 0.32 and Re = 100,000.
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slowly continue until t = 66. In the time range 66 _<t _<78, the downstream shock disappears, and

a large vortex-breakdown bubble appears and moves upstream. ' This motion of the bubble is

accompanied by upstream motion of the inlet shock (t = 78). Later, the inlet shock again moves
in the downstream direction, and the process is repeated. An animated movie has been produced

to show the breakdown modes until a total dimensionless time of t = 200.

Fig. 8. Streamlines and Mach contours for swirling flow with quasi-steady breakdown: with M_ = 1.75,
= 0.32 and Re = I00,000.
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Figure 5 shows an enlargement of two snapshots of the streamline solutions at t -- 84 and 87.

At t = 84, five vortex-breakdown bubbles spatially alternate in their sign of vortex strength. Six

stagnation points exist at the axis. At t = 87, seven vortex-breakdown bubbles and seven stagnation

points can be seen. The figure shows the merging of two bubbles of same sign of vorticity. This
swirling flow case shows a periodic multifrequency, multibubble breakdown flow.

Effect of the type of boundary conditions at the exit

In the present study, the downstream-exit boundary conditions at the subsonic points are replaced
by using the Riemann-invariant boundary conditions. The Riemann-invariant boundary conditions

at the subsonic points are applied with three different values of pressure, called the back pressure

Pb: for the first value, Pb = P_; for the second value, Pb = 2p®; and for the third value, Pb is obtained
from Opb/dX = const. The other four flow variables are extrapolated from the interior cell centers

at the duct exit. The Re and//are fixed at 100,000 and 0.32, respectively.

For Pb = Po_ up to t = 35, the solution is the same as that where the exit boundary conditions
are extrapolated from the cell centers. (See Fig. 4.) Thereafter, for t > 35, the inlet shock

continuously moves in the downstream direction and the vortex-breakdown bubbles move ahead

of the shock. The shock and vortex bubbles are shed and disappear from the duct at advanced
levels of time. The breakdown mode is termed as a transient multibubble vortex breakdown. The

shock/vortex-breakdown/bubble system disappears because the back pressure is too low to support
the inlet shock sufficiently to keep it in the inlet region. Moreover, the Riemann-invariant boundary

conditions at subsonic points allow the downstream effects to propagate upstream as time increases.
For Pb = 2p_, Fig. 6 shows snapshots of the streamlines and Mach contours of the solution. A

comparison of the present solution with the solution in Fig. 4 shows that the two solutions are
similar, except that the present solution lags that of Fig. 4 in time. The reason for this lag is that the

back pressure Pb of the present case is larger than that shown in Fig. 4. Moreover, the

Riemann-invariant conditions at subsonic points allow the downstream effects to propagate
upstream as time increases. The large back pressure, which is felt upstream, supports the inlet shock

and keeps it in the inlet region.

For C_pb/dX= const, Fig. 7 shows snapshots of the streamlines and Maeh contours of the solution.

A comparison of the present solution with the solution in Fig. 4 shows that the two solutions are
similar until t = 22. Thereafter, for t > 22, the inlet shock continuously moves in the downstream

direction with the vortex-breakdown bubbles moving ahead of the shock. Again, as in the case

of Pb =P_, the shock and vortex bubbles are shed and disappear from the duct at advanced
levels of time. The breakdown is a transient multibubble vortex breakdown. The shock/vortex-break-

down/bubble system disappears because the back pressure obtained from the apb/dx = const condition
is too low to support the inlet shock and keep it in the inlet region. Moreover, the Riemann-invariant

conditions at subsonic points allow the downstream effects to propagate upstream as time increases.

Effect of the swirl ratio fl

In this section, the effect of the swirl ratio on the vortex-breakdown modes is studied. The

downstream-exit boundary conditions are obtained by extrapolating the flow-field variables from

the interior cell centers at the boundary. The Re for all the cases considered is 100,000; _ is varied
between 0.2 and 0.38.

Fig. 9. Grid of nozzle flow (221 x 51).
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For the _ range 0.2-0.27, a shock is captured at the duct inlet and moves slowly in the

downstream direction in the subsequent time steps until it stops just before the end of the straight
inlet portion of the duct. Thereafter, it becomes stationary. No vortex breakdown is detected, and

the flow at the exit boundary remains supersonic. This result shows that as/_ is decreased by 15.6%
from its original value of 0.32 (Fig. 4), vortex breakdown does not develop.

r = 0.695 r=l.1

t 8

= 17

;71

t = 55

Fig. I 1 continued opposite.
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-- 1.1

80. t = 71

t=90

Fig. 11. Streamlines and Mach contours for a supersonic swirling jet from the nozzle; with low-frequency,
almost single-bubble vortex breakdown and extrapolation from interior boundary conditions.

For the fl range 0.28-0.3, a transient single-bubble vortex breakdown is captured that is similar

_o the case in Fig. 2, where Re = 4000 and//= 0.32. This result shows the dominant effect of the
swirl ratio on the vortex-breakdown development. With a decrease in/3 of 6.3% from its original

value of 0.32, the vortex-breakdown mode changes from a periodic, multifrequency multibubble

breakdown to a transient, single-bubble vortex breakdown.

For fl = 0.38, Fig. 8 shows snapshots of the streamlines and Mach contours of the solution. The
vortex-breakdown bubbles are larger than those shown in Fig. 4. In the initial time range up to

t = 17, the process of evolution, convection, merging and shedding of vortex breakdown bubbles
continues, and the inlet shock moves first downstream, then upstream and finally downstream. For

t > 17, a large vortex-breakdown bubble is formed behind the inlet shock, which oscillates with

very small amplitude around a mean position. The process of evolution, convection, merging and
shedding of additional small vortex-breakdown bubbles continues, and the large vortex-breakdown
bubble oscillates with a very small amplitude around a mean position. This vortex-breakdown case
introduces a new mechanism that is different from those encountered earlier.

Vortex Breakdown of a Supersonic Flow from a Nozzle

In this case, a supersonic swirling jet at Mj = 3, which is issued from a nozzle into a supersonic
uniform flow of M_ = 2, is considered. A grid of 221 x 51 x 2 in the axial, radial and tangential

directions, respectively, is used. The computational domain in an axial plane has the dimensions
7 x 3.5 in the axial and radial directions, respectively, where the nozzle exit radius r = 1. The

free-stream Re = 296,000. Figure 9 shows the computational domain and a typical grid for this

external flow case. The grid is clustered at the nozzle exit and at the CL.

Figure 10 shows the inflow profiles of the axial velocity, swirl velocity, radial velocity, pressure
and density, which are taken from the experimental data of Ref. [16]. The initial profiles are used

as quasi-axisymmetric profiles for the present computations. On the cylindrical boundary (side

wall) of the flow at r = 3.5, free-stream conditions are imposed that correspond to M_ = 2. The
initial conditions in the computational domain are those that correspond to the free-stream

conditions at M_ = 2. The problem is solved with two types of exit boundary conditions at x = 7.
First an extrapolation of all five variables from the interior cell center is used; then the

Riemann-invariant boundary conditions are used.

Extrapolation from interior cell centers

Figure 11 shows snapshots of streamlines and Mach contours of the solution. The streamlines
show multibubble breakdown at the early levels. These bubbles develop because of the shock system
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84

t=90

90

Fig. 12.Streamlinesand Machcontours for a supersonicswirlingjet fromthe nozzlewith low-frequency,
almost single-bubblevortex breakdownand Riemann-invariantboundaryconditions.

that is formed at the nozzle exit in the vicinity of the CL. A strong portion of the shock exists at

the CL, which splits into two oblique shocks; one is a weak shock and the other is a strong shock.
Vortex-breakdown bubbles develop behind the strong shock. Thereafter, for t > 5, the shock

system and the vortex-breakdown bubbles move slowly in the downstream direction. At t > 55,
both the shock system and the vortex-breakdown bubble move upstream. The slow motion of the

shock system and the vortex-breakdown bubble continues back and forth between these two
locations. No vortex shedding has been captured during the computations for this case. Most of

the exit points are continuously supersonic; hence, no upstream effects exist except within a very
thin layer around the CL.

Riemann-invariant boundary conditions

Next, the boundary conditions at the exit are replaced by the Riemann-invariant boundary

conditions with Pb =P_ at the subsonic points. Figure 12 shows snapshots of the streamlines and

Mach contours of the solution. A comparison of the present solution with the previous case shown
in Fig. ! 1 shows that the present boundary condition has only a slight effect on the solution. This
result is not unusual because the subsonic region at the exit is very small and, moreover, the exit

boundary is far from the nozzle exit.

Figure 13 shows an enlargement of the Mach contours at t = 55 for the flow case shown in

• Fig. 11. The shock system near the nozzle exit is clearly seen.

CONCLUDING REMARKS

The numerical simulation and the study of supersonic vortex-breakdown phenomena have been

examined for internal and external supersonic swirling flows. A time-accurate solution of the
unsteady, compressible, full NS equations is used to produce the solutions. The equations are

solved for laminar flows with an implicit, upwind, flux-difference splitting, finite-volume scheme.

The solutions are obtained for quasi-axisymmetric flows with a three-dimensional code, FTNS3D,

by forcing the flow-field vector to be equal on two axial planes in close proximity to each other.

Quasi-axisymmetric flow solutions require 1 order of magnitude less in computational time than
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Fig. 13, Enlargement of Mach contours at t = 55 for a supersonic swirling jet from the nozzle.

the three-dimensional flow solutions and still provide substantial physical understanding of the

supersonic vortex breakdown and the dominant parameters that affect it.
In the present study, two supersonic swirling flow cases are considered: the first case is a supersonic

swirling flow in a configured duct; the second case is a supersonic swirling jet flow that is issued
from a nozzle into another supersonic uniform flow of lower Mach number than the nozzle flow. For

the configured duct, the effects of Re, the type of downstream-exit boundary conditions and the swirl
ratio fl are studied. As Re is varied from 4000 to 100,000, different modes of vortex breakdown are
obtained: a transient single-bubble breakdown; a transient multibubble breakdown; and a periodic

multifrequency, multibubble breakdown. These solutions have been obtained with extrapolated flow
conditions from the interior cell centers at the exit. For the flow case with Re = 100,000, the

downstream-exit boundary conditions have been replaced with the Riemann-invariant boundary

conditions with Pb = P_, Pb = 2p_ and _pb/dx = const. The solutions have shown substantially differ-
ent vortex-breakdown modes which are dependent upon the type of exit boundary conditions. The

reason for this result is the upstream effect of the type of exit boundary condition at the exit subsonic

points. Again, for the flow case with Re = 100,000, fl has been varied from 0.2 to 0.38. No vortex
breakdown develops in the fl range 0.2-0.27. In the fl range 0.28-0.3, a transient single-bubble
breakdown develops. At fl = 0.38, a quasi-steady, large vortex-breakdown bubble develops with

small bubbles that experience convection, merging and shedding around the large bubble.

For nozzle jet flow, the type of downstream-exit-boundary condition has very little effect on
the vortex-breakdown mode. This result occurs for two reasons: first, most of the exit portion of

the flow is supersonic, and only a very thin subsonic portion exists around the CL; second, the
downstream exit is located at a large distance from the nozzle exit--therefore, the upstream

propagation of the type of exit boundary condition at the subsonic points is very small.
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Abstract. Steady and unsteady asymmetric vortical flows around slender bodies at high angles of attack are

solved using the unsteady, compressible, this-layer Navier-Stokes equations. An implicit, upwind-biased,

flux-difference splitting, finite-volume scheme is used for the numerical computations. For supersonic flows

past point cones, the locally conical flow assumption has been used for efficient computational studies of this

phenomenon. Asymmetric flows past a 5* semiapex-angle circular cone at different angles of attack, free-stream

Mach numbers, and Reynolds numbers has been studied in responses to different sources of disturbances. The

effects of grid fineness and computational domain size have also been investigated. Next, the responses of

three-dimensional supersonic asymmetric flow around a 5° circular cone at different angles of attack and

Reynolds numbers to short-duration sideslip disturbances are presented. The results show that flow asymmetry

becomes stronger as the Reynolds number and angles of attack are increased. The asymmetric solutions show

spatial vortex shedding which is qualitatively similar to the temporal vortex shedding of the unsteady locally

conical flow. A cylindrical afterbody is also added to the same cone to study the effect of a cylindrical part on

the flow asymmetry. One of the cases of flow over a cone-cylinder configuration is validated fairly well by

experimental data.

1. Introduction

Most flight vehicles are designed for attached flow at low angle-of-attack cruise conditions.

However, for fighter aircraft or missiles under maneuvering conditions, the high angle-of-at-

tack flight regime is of vital importance. At high angle of attack, slender bodies and highly

swept wings, common to both fighter aircraft and missiles, led to extensive regions of vortical

flow on the leeside of the body because of three-dimensional boundary-layer separation. If

the vortices are both symmetric and stable, their influences can be exploited favorably to

provide high lift and maneuverability for the vehicle. The region of favorable influence is

terminated by the onset of asymmetric vortices and the occurrence of vortex breakdown. Such

phenomena produce large side forces and moments, which may be larger than those

attainable by the vehicle control system, thus jeopardizing flight safety.

In the next section, the physical characteristics of vortical flows about various slender

bodies are described. This is followed by a survey of the experimental and computational

research work on asymmetric vortex flows.
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1.1. Physics and experimental work

Keener and Chapman (1977) categorized vortical flow regimes into four distinct flow

patterns for slender bodies at various angles of attack (with zero sideslip). These patterns also

reflect the diminishing influence of the axial flow component (fig. 1). The first pattern

develops in the very low angle-of-attack range, where the flow is attached and vortex free, and

the axial flow is dominant. At moderate to high angles of attack, the crossflow influence

becomes of the same order of magnitude as that of the axial flow, and large scale vortices are

formed on the leeward side of bodies because of three-dimensional boundary-layer separa-

tion. In this angle-of-attack range, the vortices are both stable and symmetric, and the large

increments in normal force due to the low pressure induced on the leeward surface by the
vortices can be exploited to aerodynamic advantage. A majority of the research work in

vortical flows has been focused on understanding this symmetric flow pattern. At even higher

angles of attack, the crossflow effects start to dominate and the vortices may losetheir

stability or even symmetry, which may lead to asymmetric vortices about a symmetric body or

breakdown of the vortices. Either phenomenon may occur in a quasi-steady or unsteady

fashion. Both the asymmetric disposition of the vortices and vortex breakdown give rise to

sudden and potentially catastrophic changes in side-force and moment characteristics. Hence,

prediction and understanding of the onset of vortex asymmetry and vortex breakdown are

essential. The fourth flow pattern develops at extremely high angles of attack (up to 90°),

where the crossflow influence dominates completely, and the leeside flow is characterized by
an unsteady diffuse wake, with the possibility of having either random or periodic vortex

shedding depending upon the Reynolds number, Mach number, and geometric details. The

asymmetric time-dependent vortex shedding is similar to the von Kfirmfin vortex sheet in

two-dimensional flows around cylinders.

Historically, highly swept, round and sharp leading-edge wings and pointed slender bodies

are common generic models for the principal components of real fighter aircraft and missiles.

The study of vortical flows around these isolated aerodynamic components plays an important

role in the understanding of vortex flows under various conditions including unsteady
vortex-dominated flows, vortex/shock interaction, asymmetric vortex flow, and vortex break-

down. For the design of modern fighter aircraft and missiles, the prediction of the onset of

vortical flow asymmetry is essential. For isolated pointed forebodies, the onset of asymmetry

occurs when the relative incidence (ratio of angle of attack to semiapex angle of the forebody)
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Fig. 1. Effect of angle of attack on leeside flow field.
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exceeds a certain value, e.g., for a pointed circular cone, the relative incidence must be higher

than two, which has been documented by Peake and Tobak (1982). This flow pattern develops

about symmetric slender bodies at zero-degree sideslip in response to small perturbations in

body geometry at the nose or in the flight conditions such as transient sideslip and acoustic

disturbances. The sudden changes in side force and moment characteristics resulting from the

asymmetry, in many instances, are sufficiently large to trigger an aircraft or missile to spin. At
relative incidences near the onset of the asymmetry, the flow is nominally steady. At

sufficiently high relative incidences, the flow becomes unsteady and asymmetric, with vortex

shedding either randomly or periodically.
The literature and recent research work, both computational and experimental, show

extensive work in the area of study of symmetric vortex flows. Surprisingly, very limited

research work exists in the area of steady and unsteady asymmetric flows. Recently, a small

number of computational research studies by several investigators have focused on predicting

and analyzing the onset of flow asymmetry over slender bodies. This asymmetric vortex

formation is still an outstanding problem whose physics are poorly understood. While

experimental studies have produced flow visualization of steady and unsteady asymmetric

flows on slender bodies, the mechanisms which lead to flow asymmetry are not well

understood.

Currently, two mechanisms exist in the literature for explaining the evolution of asymmetry

(for example, Peak and Tobak, 1982; Skow and Peake, 1982; Lamont, 1982; Yanta and
Wardlaw, 1982). The first of two these hypotheses appears to operate in both the laminar and

fully turbulent separation regimes. It suggests that the asymmetry occurs because of the

instability of the velocity profiles in the vicinity of the saddle point that exists in the crossflow

planes above the projections of the body vortices. The second hypothesis relates the asymme-

try to the occurrence of. asymmetric boundary-layer transition, leading to an effectively

asymmetric mean flow about a given body. The onset of asymmetry over slender bodies is

accompanied by a rapid, local asymmetric movement of the secondary separation line and

then the primary separation lines circumferentially, precipitated by an asymmetric transition

region. Although the second mechanism is operable only within the transition zone, the

former mechanism plays a role in both laminar and fully turbulent flows. For pointed slender

bodies, the first mechanism produces higher side forces than those produced by the second
mechanism. Indeed, the implications from the experimental work of Lamont (1980, 1982) with

tangent-ogive cylinders is that the vortex wake is less structured in the transition domain,
leading to reduced side and normal forces. In the laminar or fully turbulent regions, the

vortex structure is well organized, giving rise t 0 larger forces.
The asymmetric vortex wake usually develops from asymmetric separation line positions on

the body, but the latter does not appear to be a necessary condition for the former to occur.

Asymmetric flow has been documented for sharp-edge delta wings where the primary

separation is fixed at the leading edge (for example, Shanks, 1963; Keener and Chapman,

1977; Ayoub, 1987; Rediniotis and Telionis, 1989). Generally, even though the separation

lines are fixed at the sharp leading edges, asymmetry occurs at higher relative incidences than
those obtained with smooth pointed forebodies or forebody-cylinder configurations. The

occurrence of asymmetry is attributed to the hydrodynamic instability in the vortex flowfield

resulting from the crowding together of the vortices as the wing semi-nose angle is decreased.
The obvious challenges to computational fluid dynamicists is to simulate the asymmetric

vortex flows through the existing two hypothesized mechanisms, which has been discussed

earlier. The second challenge is to investigate the determinable parameters for the onset of

vortical flow asymmetry. These challenges represent the motivation behind the present paper.
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1.2. Computational work

Recently, several attempts have been carried out to computationally simulate steady and

unsteady asymmetric vortical flows around slender bodies of revolution. Graham and Hankey

(1982) presented the first attempt to compute asymmetric vortical flow over a cone-cylinder

body, which had been tested experimentally by Thomson and Morrison (1971). They used the
MacCormack explicit finite-difference scheme to solve the unsteady full Navier-Stokes

equations for a laminar flow on a relatively coarse grid. The computed asymmetric vortical

flow was found to be numerically induced by the MacCormack algorithm by its noncentered

spatial differencing. It was believed that a very small perturbation was induced by the

finite-difference algorithm truncation error, which triggered an instability at the saddle point

above the body. Hence, the instability was induced by numerical bias which was physically

amplified to produce the asymmetry. By switching the algorithm's sweep direction, the

asymmetry pattern was reversed. Discrepancies between numerical and wind-tunnel results

were attributed to insufficient grid resolution, since small disturbances would not be amplified
on the coarse grid.

In an attempt to simulate asymmetric vortex flow around an ogive-cylinder body at very

high angles of attack and at subsonic speeds, Degani and Schiff (1989) obtained asymmetric

flow solutions to the thin-layer Navier-Stokes equations by introducing a forced asymmetric

disturbance near the body nose in the form of a small surface jet. When the jet was turned

off, the flow asymmetry was dissipated and the flow recovered its symmetry. In a later paper
by Schiff, Degani and Gavali (1989), the unsteady, thin-layer Navier-Stokes equations were

used to compute the same problem. Vortex unsteadiness developed with increasing angles of

attack. The behavior of the fluctuations with incidence paralleled the trends observed in

experiments by Degani and Zilliac (1988). Degani (1990) used the same computational

scheme to predict the flow around the same ogive-cylinder body for angles of attack a -- 20 °

to 80 °. His numerical experiments were focused on investigating the origin of the vortex
asymmetry. Based on his results, the flow field around slender bodies was divided into three

main groups, depending on the angle-of-attack range. In the range 0° < a < 30 °, the results
show that the flow was symmetric and introduction of small disturbances near the nose had

only a small effect on the flow asymmetry. In the second range, 30°< a < 60 °, the flow
became steady asymmetric upon introduction of a spaced-fixed forced disturbance near the

nose. However, when the disturbance was removed, the flow recovered its symmetric shape.

The origin of asymmetry was attributed to a convective-type instability mechanism. In the very

high range, 60 ° < a < 80°, the flow became unsteady with vortex shedding upon introduction

of a small transient disturbance with short duration. The origin of flow unsteadiness and

vortex shedding was attributed to an absolute-type instability mechanism. Although this

investigation revealed good tentative conclusions, there are several remaining questions to be

addressed. These questions are related to the dissipative effects of the scheme, particularly in

the crossflow planes, and to the grid fineness and its resolution of the disturbance growth.

Steady solutions of the incompressible, full Navier-Stokes equations for vortical flow over

a sideslipping delta wing have first been presented by Hsu and Liu (1990). Results were
compared with measured data for force and moment coefficients as well as vortex-core

positions. However, the vortical strength was underpredicted, because of either a lack of grid

resolution in the vortical region or an inadequate turbulence model for this massively

separated flow. Strong flow asymmetry was obtained due to the 12 ° sideslip angle.

Asymmetric vortical flow simulation due to various types of short-duration disturbances

was attempted by several investigators. Siclari and Marconi (1989) also used the unsteady, full

Navier-Stokes equations with a multi-grid, central-difference, finite-volume scheme to solve

for steady, asymmetric, locally-conical flows around a 5° semiapex-angle cone over a wide
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range of angles of attack. At very high incidences, a steady asymmetric solution was captured.

Later, the same scheme was applied to solve for steady, asymmetric, locally conical flows

around cones with elliptic, diamond, and biparabolic sections (Siclari, 1990).

The present authors (Liu et al., 1990; Kandil et al., 1990a-c) investigated the prediction

and control of asymmetric supersonic vortex flows around circular and noncircular cones over

wide ranges of angles of attack, Mach numbers, and Reynolds numbers with locally conical

flow assumptions. Unsteady asymmetric vortex flows with periodic vortex shedding were

captured using several different schemes. Later, Kandil et al. (1991a) compared the asymmet-

ric flow solutions using thin-layer Navier-Stokes and full Navier-Stokes equations. The

three-dimensional asymmetric flow solutions around circular cones and cone-cylinder configu-

rations were also studied by the Kandil et al. (1991b). A comprehensive review of the research

work done by the present authors is presented in the next section.

1.3. Present work

In this work, the unsteady, compressible, thin-layer Navier-Stokes equations are used to

study supersonic, asymmetric, vortical flows. The onset of flow asymmetry occurs when the

relative incidence of pointed forebodies exceeds certain critical values. At these critical values

of relative incidence, flow asymmetry develops due to natural and/or forced disturbances. In

actual flows, the origin of natural disturbances may be a transient sideslip, an acoustic

disturbance, or similar disturbances of short duration. The origin of forced disturbances may

be geometric imperfections in the nose region or similar disturbances of a permanent nature.

The present work is focused on the evolution of flow asymmetry due to assumed natural-type

disturbances. Two types of flow disturbances are studied: a random round-off error disturb-

ance and a controlled transient sideslip disturbance with short duration. In addition to

relative incidence as one of the determinable parameters for the onset of flow asymmetry, the

effects of free-stream Mach number, Reynolds number, and cylindrical afterbody are studied

and have been determined to be important parameters.

Because of the expensive computational resources required for solving three dimensional

problems, the first part of the computational studies have been applied to supersonic, locally

conical flows around point cones. Therefore, the mechanism for the onset of steady and

unsteady flow asymmetry can be studied efficiently and delineated by solving the locally

conical problems before the three-dimensional problems are examined. In the second part,
three-dimensional asymmetric supersonic flows over a cone and cone-cylinder configurations

are investigated, based on the study of the locally conical flow solutions.

2. Formulation

In high Reynolds number viscous flows the effects of viscosity are mostly concentrated in

narrow regions adjacent to solid bodies and in narrow regions of freeshear layers. Owing to

computer memory limitations, only a limited number of grid points is available for clustering
mesh points in these regions. As a result, fine-grid spacing is used in directions which are

nearly normal to these regions, and coarse-grid spacing must be used tangent to these regions.

In boundary-layer theory, perturbation analysis shows that streamwise components of the

viscous terms can be neglected relative to those in the normal direction. Similar arguments

can be applied to the Navier-Stokes equations as a justification for the thin-layer approxima-

tion. The thin-layer approximation is not the same as the boundary-layer approximation, since

an approximate form of the normal momentum equation is retained and pressure variation

across the boundary-layer thickness is taken into consideration. The thin-layer approximation
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breaks down for low Reynolds numbers and a regionswhere viscouseffectsbecome signifi-

cant in alldirections.Of course,the fullNavier-Stokes equations can be incorporatedif

sufficient resolution is provided by the limited grid and if the physical situation warrants it.

Therefore, in the present work, thin-layer Navier-Stokes equations are chosen to formulate

two- and three-dimensional flow problems.

2.1. Thin-layer Navier-Stokes equations

In many computational applications, the body surface is a boundary of the computational

domain, and hence the use of body conformal coordinates makes the surface boundary

condition easy to apply. The transformation of the governing equations from the physical

Cartesian coordinate system (x 1, x 2, x3), to time-independent curvilinear coordinates,
(_l, _2, _3), is given by

sc"= _:"(x 1, x 2, x3). (1)

Using the above transformation, the thin-layer Navier-Stokes equations are

O4/Ot "+-_/_m/0_rn--0(/_v)3//_3=0, m= 1,2,3, (2)

where the flowfield vector, q, is given by

I°/pUl

#=J-'q=J-1lpu21 , (3)

Ipu3/

the inviscid fluxes, /_,,, are given by

pum
pUlU m -4- ex_ P

ff.,_ =J-' Pu2Um + e,_P , (4)

pu2V. + 7,p
Um(et+P)

and the viscous and heat-conduction flux in _3 direction, (/_v)3, is given by

0

_ X3)'l'jl

(/_v)3=J -1 _x3,rj2 , j=1,2,3. (5)

_ x3j'l'j3

e 3?jl
The contravariant velocity component in the _:'_ direction is

m

U,, = s_ u/, (6)

and any element corresponding to the three momentum equations in eq. (5) is given by

/zM® I !¢3 c.30ui 1=3/:30ul )Cx3'r/'------_ee I 3 _'Sx_-_+'x,'xJ-_ ' 1=1,2,3, (7)
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where _:x3, - O_3/Oxj. The last element in eq. (5) is

,,( 1_xa_bi=gM® !r'3Ou--LH +_xfl_' uk (y-l)Pr 0--_+ " (8)

In eq. (5), the rs represent the Cartesian components of the shear-stress tensor for a

Newtonian fluid, assuming Stokes hypothesis and the bs are the shear-dissipation power and
conduction heat transfer. The inverse of the Jacobian matrix of transformation is

O(x,,x:,
j-l=

XI_J

_ X2s_l

X3_l

and the metric terms are

Xls_2 XI,_3 ,

X2_2 X2_2

X3_2 X3s_3

(9)

Of" OxI Oxk
I -1 (10)

Ox,,, = _J eijnetkm O_ i O_ j '

where e,j,, and elk m are the permutation symbols.
For convenience, all the tensors are expressed in indicial notation. The flow variables are

introduced in non-dimensional form, and each is referenced to its appropriate free-stream

value. The non-dimensional density, p, Cartesian velocity components u 1, u 2, u 3, total energy

e t, viscosity/z, and speed of sound a, are defined as the ratio of the corresponding physical

quantities to those in the free stream, namely p_, a®, p_a 2, tx_, and a_, respectively. The

pressure, p, is non-dimensionalized by p_a 2, and is related to the total energy for an ideal gas

by the equation

1

p= ( y- l)(et = _puiuj) , (11)

where 3' is the ratio of specific heats, and its value is taken to be 1.4 in the present research

work. The coordinates x 1, x 2, x 3, and time, t, are non-dimensionalized by a characteristic

length, L, and a characteristic time, L/a_, respectively. The viscosity,/z, is evaluated by using
Sutherland's law

= T3/2[(1 + C)/(T+ C)], (12)

where T is the temperature and C is the Sutherland constant, which is 110.4 K. The Prandtl

number, Pr, is chosen to be 0.72. The Reynolds number is defined as Re = p_U_:L/ix:¢, and

the characteristic length, L is chosen as the length of the body.
The values of all the free-stream flow quantities which are used as the initial conditions for

all applications are given as follows:

p:_=l, ul:c=M_cos acos/3, u2::=-M:¢ sin /3,

1 2
u_=M® sin acos /3, e,:_=l/y(y-1)+sM2, p:c=I/T,

a_ = T== 1, U®= (u_u_) 1/:, M® = UoJa_, (13)

where M_ is the free-stream Mach number, a is the angle of attack, and /3 is the sideslip

angle.

2. 2. Locally conical Na vier-Stokes equations

For supersonic flows, the three-dimensional Navier-Stokes equations can be transformed

into the simpler conical flow equations by using the conical coordinates, X, Y, and Z, with

X=xl, Y=x2/xl, Z=x3/x 1. (14)
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Physically, a conical flow has the property that all flow quantities are invariant along rays that

emanate from the apex of the conical surface. Using eq. (14) to transform the full Navier-

Stokes equations to X, Y, Z coordinates and imposing the conical flow property, the resulting

equations in abstract form are given by

aq a(F- Fv) a(6-
X-- + + + 2(E 1 - E_l ) = 0, (15)

0t 0Y 0Z

where the inviscid fluxes are

PU2 PUl

RUlU 2 RU 2 + p

F= E2 - YEI = pu_ + p - y pulu 2 , (16)

PU2U3 PUlU3

u2(e,+p) ul(e,+e)

PU3 PUl

PUlU 3 pU 2 + p

G = E 3 - gE 1 -- PU2U3 - Z pulu2 , (17)

puZ + p pulu 3

u3(et +P) ul(et +P)

and the viscous fluxes are

"/'21 1

Fv=E_E-YEv,= |?22 -Y "12 , (18)

?23 ?13

b2 bl

0 (0tT31 ?11

G=Ev3- ZEvl = ?/'32-z/,12/. (19)

T33 [ T 13/

b3 [ bl ]

The shear stresses, dissipation power, and heat transfer terms are obtained by using chain-rule

differentiation and enforcing the conical flow property, i.e. all derivatives in the X-direction

are zero. For example, the principal stress, ?_, can be simplified as

21_M=( _ On2 0/'/20U3) (20)"rll = ReX 2Y + 2Z-_- + a----Y+ 0"Z- "

The resulting equations (15) have spatial variation in the Y- and Z-directions only. Thus,

these equations are two-dimensional equations with source terms. Hence, they are more

economical to solve than the three-dimensional equations. It is also noticed that the time-de-

rivative term in eq. (15) is multiplied by X and an axial length-scale dependence exists in the

viscous terms (20). Hence, eq. (15) is not self-similar in X-direction, and thus it does not

represent a globally conical flow. Only the steady inviscid flow equation represents a globally

conical flow. However, for unsteady viscous flow over a conical body, if X is fixed at a certain

location, the flow may be thought of as "locally conical", with the Reynolds number

determining the location of the conical plane in which eq. (15) is solved. The best that can be

done to make use of this equation is to select a constant value for X, and solve the resulting

equation for what we call "locally conical flow".
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3. Computational scheme

The computational scheme used to solve the governing equations is an implicit, upwind-bi-

ased flux-difference splitting, finite-volume scheme. The discretized equation is integrated

numerically in time using the Euler implicit time-differencing method. The linearized,

backward-time approximation for the flowfield vector is written in the delta form as

J At A_ n =R(4n), (21)

where

_--
In eq. (22), _Sej is the spatial difference operator. The coflvective and pressure terms are
discretized using the flux-difference splitting scheme of Roe and differenced using the

MUSCL (Monotone Upstream-centered Scheme for Conservation Laws) of van Leer. The

flux-difference splitting of Roe is based on the approximate Riemann problem. The Riemann

problem is used as a mechanism to divide the flux difference between the neighboring states,

such as the interface of two computational cells, into component parts associated with each

wave field. As each eigenvalue is also associated with its own wave field, so the splitting can

be done based on the eigenvalues. The smooth flux limiters are used to eliminate oscillations

in the shock region, and the viscous and heat-flux terms are centrally differenced. The

resulting difference equations are solved using a spatially split approximate factorization

along the _J, _2, _3 directions, respectively. The scheme is first-order accurate in time and

third order accurate in space. Details of the above described scheme are given by Wong

(1991).

Since the applications in this paper cover some locally conical flow problems, locally

conical flow solutions can be obtained by solving the problem in three conical planes using a

three-dimensional solver. This is achieved by setting the conserved components of the

flowfieid vector, q, to be equal at two planes. All of the locally conical solutions in the present

work are obtained in this way.

3.1. Initial and boundary conditions

All the numerical calculations of the steady-flow problems are obtained by using impul-

sively-started initial conditions, i.e. bodies are suddenly placed in the free stream at angles of

attack specified by the problem. For unsteady-flow problems, solutions obtained from the

pseudo time-stepping calculation corresponding to the same flow conditions are used as initial
conditions in order to save the computational cost for the transient state.

The boundary conditions for the present work are implemented explicitly. On the solid

boundary, the no-slip and no-penetration conditions are enforced, i.e. u_ = u 2 --u 3 = 0, and

the normal pressure gradient is assumed to be zero. The adiabatic condition is maintained on
solid surface.

To obtain a locally conical flow or three-dimensional solution for supersonic free-stream

Mach numbers, the computational domain is extended far enough to permit capture of the

bow-shock formed outside of the body as part of the solution. Since the disturbance from the

body will not propagate beyond the bow-shock in the crossflow plane, the conditions outside
the conical shock are the same as the free-stream conditions. Therefore, the farfield boundary

conditions are specified to be the free-stream conditions. Since the locally conical flow
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solutions are obtained by solving the problem in three conical planes using a three-dimen-

sional solver, free-stream conditions are enforced on the farfield boundary of the first and

third conical planes. For the three-dimensional flows, first-order extrapolation from the

interior points at the outflow boundary is used. At the geometric plane of symmetry, periodic

conditions are used since the problem is solved for the whole computational domain.

4. Results and discussion

4.1. Locally conical flows

The mechanisms which lead to steady and unsteady asymmetric vortical flows past slender
wings and bodies at high angles of attack at zero sideslip are not well understood. From

experimental studies of these phenomena, several investigators proposed two mechanisms for

explaining the origin of the flow asymmetry. These have already been described in the

previous section. The first mechanism, asymmetric flow due to a saddle-point instability, is

demonstrated in this section. Two types of flow disturbance, a random round-off error

disturbance and a controlled transient sideslip disturbance with short duration, are used to

demonstrate the mechanism which leads to flow asymmetry. In addition to the relative

incidence as one of the determinable parameters for the onset of flow asymmetry, other

influential parameters such as the Mach number are studied and presented in this section.

4.1.1. Steady asymmetric flows over a cone

Supersonic flows over a 5° semiapex angle cone at a Reynolds number Re = 105 have been

computed. The grids used in all the numerical tests in this section are generated by using the

modified Joukowski transformation with a geometric series for grid clustering near the cone

surface. For all the cases, a grid of 161 x 81 points is used, where the first number is the

number of points around the cone and the second number is the number of points normal to

the cone surface. A 241 x 121 grid and a 161 x 81 grid with different mesh fineness ratios or

different computational domain sizes have also been used to test the effect of grid fineness

and domain size on the numerical solutions. A typical grid of 161 x 81 points is shown in

fig. 2.
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Fig. 2. A typical grid of 161 x 81 points for a circular cone.
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To establish an optimum grid and to ensure that the asymmetric flow solution is unique,

irrespective of the grid fineness and the computational domain size, numerical tests have been

carried out with several different grids. The tests have computed the supersonic flow around a

cone at a -- 20°, M® = 1.8, and Re = 105 (relative incidence is four for this case). A grid of

161 x 81 points in the circumferential and normal directions, respectively, has been used with

different minimum grid spacing, A_:3, at the solid boundary, while the maximum radius of the

computational domain, rt, is fixed at 21r, where r is the radius of the circular cone at the
axial station of unity. Three cases, computed using A_ 3 = 10 -3, 10 -4, and 10 -5, are shown in

fig. 3. In fig. 3, the logarithmic residual error versus the number of iterations, the surface

pressure versus the azimuthal angle, O, which is measured from the leeward plane of

geometric symmetry, and the total-pressure-loss contours are shown. The residual error
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Fig. 4. Effect of increased grid density on the asymmetric solution (a = 20 °, M= = 1.8, Re ffi 105, 241 × 121 points,

hs_mi. 10 -6 ,R t 21r).



C.H. Liu et al. / Vortical flows around slender bodies .421

figures show that the error reaches machine zero (10-m to 10-n) in about 2500 time steps in

all cases and the solutions are symmetric at this point. Afterwards, with the machine

round-off error is acting as a random disturbance to the flow field, the residual error grows.

then drops down by at least another seven orders of magnitude, and finally stays constant

thereafter (constant residual error for 2000 iterations is shown). The pressure coefficient and

total-pressure-loss contours show that the flow becomes steady, asymmetric, and stable. The
solution of the three cases are not necessarily the same because the source of disturbance is a

random one, and it is possible that the solutions are mirror images of each other. Other types
of disturbances will be discussed in the next section. Furthermore, a grid of 241 × 121 points

with minimum spacing of 10 -6 is used to test the effect of grid density on the asymmetric

solution. Figure 4 shows the results of this case. The residual error figure shows that the error
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drops ten ordersof magnitude in 7500 time steps, then grows about five orders of magnitude

after being triggered by the machine round-off error and then converges to the same

asymmetric solution. Since the asymmetric solution is unique, irrespective of the size of

minimum grid spacing and grid density, an optimum grid spacing of 10 -4 is chosen in the

present study.

Two grids of 161 x 81 points with the maximum computational domain radius increased

from 21r to 32r are used to test the effect of the domain size on the solution. The optimum

minimum spacing is used for the grid. The results of this case are shown in fig. 5. The residual

history shows a similar trend in going through a symmetric unstable solution and then to an

asymmetric stable solution. The pressure coefficient and total-pressure-loss contours figures
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are consistent with the results shown in fig. 3b. Thus, the optimum grid spacing of A_ 3 = 10 -4

and the maximum radius of 21r are chosen to be used for all the cases presented in this

paper.
As mentioned in the previous section, the locally conical flow solution is obtained by

forcing the equality of the flow-field vector at two cross sections, which are taken as sc_ = 0.95
and 1. A numerical test has been performed for the same flow conditions except that the

solution is achieved by forcing the equality of the vector, q, at _] = 0.995 and 1. The purpose

of this task is to test the spatial disturbance on the asymmetric solution. Figure 6 shows the

results of convergence history, pressure coefficient, and total-pressure-loss contours. The
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residual error shows that the solution takes larger number of time steps for the asymmetry to

be triggered by the machine round-off error. However, the surface pressure and the total-

pressure-loss contours confirm the uniqueness of the asymmetric solution. Since A_ 1 --0.005

is a small disturbance to the locally conical flow assumption, it is reasonable to have longer

time steps to obtain the asymmetric solutions. To efficiently use of the limited computational

resources, m_ 1 _-- 0.05 is used for all the locally conical flow problems in the present work.

Since the magnitude of residual errors shown in the above cases is so small, it is believed

that the disturbance which triggered the flow asymmetry can be attributed to the machine

= 2.6

i

i
Moo = 3.0

Fig. 9. Comparison of crossflow velocity vectors and total-pressure-loss contours for circular cone at different Mach

numbers (a = 20 °, Re = 10s).
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round-off error. This type of disturbance is random in nature. In the next section, the results

of a controlled type of disturbance are presented.

4.1.2. Controlled transient sideslip disturbance

In this section, steady asymmetric flow solutions due to a transient sideslip disturbance of

short duration are presented. Results of the transient sideslip,/3 -- -1-0.5 °, are shown in fig. 7.

The residual error figures show a drop of seven orders of magnitude in the first 2000 time

steps. At this step, a sideslip disturbance is imposed for six time steps, then it is removed.

Irrespective of the magnitude or the direction of the sideslip disturbance, the residual error

increases by six orders of magnitude, then drops down very rapidly and a stable asymmetric

flow solution is obtained. The asymmetric solutions corresponding to the +0.5 ° sideslip

disturbances are mirror images of each other, as can be seen from the surface-pressure

distributions, crossflow velocity vectors, and total-pressure-loss contours. Moreover, the final

stable asymmetric solutions of the + 0.5 ° sideslip disturbances are the same or mirror images
as those from random disturbances shown in figs. 3-5.

4.1.3. Steady asymmetric flow at different Mach numbers

Using the same optimum grid and the same 5° semiapex angle cone at ot = 20°, three cases
of locally conical flow solutions with free-stream Math numbers ranging from 2.2 to 3.0 have

been computed. The effect of the free-stream Mach number on the convergence history,

surface pressure, crossflow velocity, and total-pressure-loss contours are shown in fig. 8 and 9.

At M= = 2.2, the residual error shows that the stable asymmetric flow is obtained within the

same number of time steps as that of the M® -- 1.8 case. At M® -- 2.6, the residual error shows

that the final asymmetric solution is obtained after a larger number of time steps. At

Mr=---3.0, no asymmetric flow has been captured and the flow stayed symmetrically stable.

The surface pressure figures show that the flow asymmetry gets weaker as the Mach number
is increased. This conclusion is strongly supported by the crossflow velocity vectors and the

total-pressure-loss contours, as shown in fig. 9. It is also noted that since the nature of
disturbance is random, flow asymmetry changes sides as the Mach number increases, until it

disappears. The significant feature of these numerical tests is that the asymmetric/symmetric
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behavior of the solutions is continuous and the general trends with Mach number are in

agreement with the experimental observations by Peake and Tobak (1982).

4.1.4. Unsteady asymmetric flows over a cone

Keeping the Mach number at 1.8 and Reynolds number at 105, the angle of attack is

increased to 30 ° for the flow around the same circular cone (relative incidence is six for this

case). The histories of the logarithmic residual error and the lift coefficient versus the number

of iteration up to 15 900 time steps are shown in fig. 10. First, pseudo-time stepping has been

used up to 8000 iterations and the solution has been monitored every 500 iterations. The

solution is still symmetric at 3000 iterations. Thereafter, the flow asymmetry has been

15,000 15,100 15,200 15,300

®

15,400 15,500 15,600 15,700

Fig. 12. Snapshots of total-pressure-loss contours for unsteady asymmetric flow around circular cone (a = 30%
M® = 1.8, Re = 105, At -- 10-3).



C.H. Liu et aL / Vortical flows around slender bodies 429

15,000 15,100

15,400 15,500

Fig. 13. Snapshots of crossflow velocity vectors for unsteady asymmetric flow around circular cone (_ = 30 °. M= = 1.8,
Re = 10 s, At = 10-3).
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t,";/:- .... ,,,?,q

15,600 15,700

Fig. 13. (Continued).

obtained through the random disturbance of the scheme. The asymmetry changes randomly

from the left side to the right side, which indicates a possibility of unsteady asymmetric vortex

shedding. Therefore, the computations have been restarted from the 8000th time step using

time-accurate stepping with a minimum global time step, (At)mi . = 10 -3. The residual-error

and lift-coefficient histories show that, after switching to the time-accurate stepping, a short

Fig. 14. Snapshots of total-pressure-loss contours for unsteady asymmetric flow around circular cone within one cycle
(cylinder axis is a time axis: a = 30°. M= = 1.8, Re = 105, At = 10-3).
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transient response is followed by a periodic response. Figures 11, 12 and 13 show snapshots of

the time history of the solution for the surface-pressure coefficient, total-pressure-loss

contours, and crossflow velocity vectors. The solutions are shown every 100 time steps starting

from the time step of 15 000 to 15 700. At a time step of 15 000, the asymmetric flow is seen

with a vortex already shed from the right side. As time passes, the shed vortex is convected

into the flow, and the primary vortex on the left side stretches, while the primary vortex on

the right gets stronger, as seen from the surface-pressure curves in fig. 11. At a time step of

15 600, the primary vortex on the left side is about to be shed. At the time step of 15 700, the

primary vortex on the left side is shed into the flow field. It is also noted that the solution at
the time step of 15 700 is a mirror image to that of the 15 000 time step. Hence, the solution

from the 15000 to the 15 700 time steps represents the one half cycle of shedding. The

periodicity of the shedding motion has been captured. The period of oscillation is 10 -3 x 1400

= 1.4, which corresponds to a shedding frequency of 4.488 (Strouhal number). Figure 14

shows a snapshot of the total-pressure-loss contours over one period on a cylinder, with the

axis of the cylinder representing the time axis. The present unsteady asymmetric flow solution

has also been obtained exactly by using the flux-vector splitting scheme with the thin-layer

Navier-Stokes equations and the flux-difference splitting scheme with the full Navier-Stokes

equations on a finer grid (Kandil et al., 1991). Hence, the present solution is unique and

independent of the computational scheme or the approximation level of the Navier-Stokes

equations.

Fig. 15. A typical grid of 65 × 161 × 81 points for a 5° semiapex-angle cone.
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4.2. Three-dimensional flows

Steady and unsteady solutions using the locally conical flow assumptions for supersonic

flows around a circular cone have been presented in the previous section. For such problems,

these assumptions reduce the computational time and memory. However, the three-dimen-

sional effects cannot be neglected in certain vortical regions, such as for flows with massive

three-dimensional separation, vortex shedding, vortex breakdown, and others. In these re-

gions, one has to rely on solutions of three-dimensional Navier-Stokes equations.

In this section, solutions of three-dimensional asymmetric flows around a 5° semiapex-an-

gte circular cone and two cone-cylinder configurations are presented. Two issues concerning

the flow asymmetry around a circular-section cone in response to a short duration transient

sideslip disturbance are addressed. First, for the same cone section and for the same flow

conditions and disturbance, does the three-dimensional flow solution produce the same

solution as that of the locally conical solution presented in the previous section? Second, what

are the effects of angle of attack, Reynolds number, and cylindrical afterbody on flow

asymmetry? Finally, the results of the asymmetric flow solution are validated with those of the

experimental data by Landrum (1977).

4.2.1. Steady asymmetric flow over a cone

An O-H grid of 65 x 161 × 81 points in the streamwise (_l), circumferential (_2), and
normal (_c3) directions, respectively, has been used. The grid is generated in the crossflow

planes using a modified Joukowski transformation which is applied locally at the grid length

stations, with algebraic stretching at the cone surface. The crossflow grid (161 x 81) is of the

same size as that used for the locally conical solutions. In order to retain the same resolution

for each conical section, the outer boundary is a conical surface with the maximum radius of

3L at the cone base, where the L is the length of the cone. The minimum spacing at the cone

surface ranges from 10 -5 at the cone base to 10 -6 at the cone apex. In the circumferential

direction, the grid is equally distributed for the whole computational domain. A typical grid is
shown in fig. 15.

For the same flow conditions, a = 20 °, M® = 1.8, and Re -- 105, at which the locally conical

flow solution is asymmetric, a symmetric flow solution has been obtained using the three-di-
mensional calculation. The difference is explainable as a Reynolds number effect, since the

locally conical solution is obtained at a fixed axial station, sel= 1.0. As mentioned in the

formulation, a length scale in the viscous terms (Reynolds number) for steady viscous flow

remains after the conical transformation. The resulting equations are not self-similar, and the

location of the conical plane in the transformed equation determines the Reynolds number.

A slight asymmetric flow solution has been obtained for the three-dimensional cone flow

after increasing the angle of attack to 40 °, and the free-stream Reynolds number to 4 x 106,

and reducing the free-stream March number to 1.4. The flow is assumed fully laminar in the

numerical computation. During this computation, it has been observed that the computed

flow remains symmetric about the geometric plane of symmetry at the leeside of the body.

The symmetry of the solution is then disturbed by introducing a sideslip angle of 2° to the flow

field for about 100 time steps and then it is removed. Thereafter, the pseudo-time stepping is

continued until the residual error drops again four orders of magnitude and a stable

asymmetric solution is obtained. The total-pressure-loss contours of this case are shown in fig.

16. Although the resulting flow is no longer symmetric, the asymmetry is relatively small. In

this case, the vortices still lie close to the leeward-body surface, and the size of the shear layer

and height of the primary vortices grow with increasing distance downstream. It is also seen

that the solution is almost self-similar over a long distance of the cone length.
Next, the Reynolds number is increased to 5 × 10 6 and 6 x 10 6, keeping the other flow

conditions the same as those of the previous flow case. Again, the source of the disturbance to
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Fig. 16. Total-pressure-loss contours of flow around at 5° semiapex-angle cone (a = 40 °, M_ = 1.4. Re = 4 x 10").

Fig. 17. Total-pressure-loss contours of flow around 5 ° semiapex-angle cone (a = 40 °, M= = 1.4. Re = 5 × 10_).
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break the symmetry of the solution is a 2° transient sideslip of short duration. The computa-

tion has been monitored every 300 time steps until there are no significant changes in the

steady-state solutions. Figures 17 and 18 show the total-pressure-loss solutions for these cases.

Figure 17 shows that the asymmetry of the vortical flow becomes strong and the self similarity

of the flow asymmetry is substantially lost. However, it is seen that the primary vortices do not

change sides as moving in the downstream direction. Figure 18, which corresponds to the

free-stream Reynolds number of 6 x 10 6, shows flow asymmetry that changes sides as the

solutions develop along the length of the cone and as vortices are shed into the flow field.

Since the solution is steady, the vortex shedding is a spatial one. A close study of the solutions

shown between the fourth crossflow plane and seventh crossflow plane reveals that the vortex

shedding changes from the right side (looking downstream, fourth crossflow plane) to the left

side (seventh crossflow plane). The solutions on these two planes are nearly scaled mirror

images of each other. The present spatial flow asymmetry is qualitatively similar to the

temporal flow asymmetry of the locally conical flow solution shown in fig. 14. It is seen that
most of the asymmetric vortex flow characteristics and physics in the crossflow can be

captured quantitatively by the locally conical flow solutions.
Figure 19 shows the total-pressure-loss solution for the same cone for Re = 8 x 106. The

asymmetry of the vortex flow becomes much stronger, as compared with the previous cases of

figs. 16-18. By comparing the solution of this case with that of the Re = 6 x 106, it is noticed
that the flow asymmetry of the case with Re = 8 × 106 changes sides along a shorter axial

distance (third and fifth crossflow planes). Moreover, the flow asymmetry of the case with

higher Reynolds number changes sides one more time (fifth and ninth crossflow planes) and,

thus, a complete wave length of flow asymmetry is formed between the third and ninth

crossflow planes. A close study of the mechanism of spatial vortex shedding along the cone
reveals that it is similar to the unsteady vortex shedding of the locally conical flow solution. At

the third crossflow plane (x_/L = 0.2), the asymmetric flow is seen with vortex already shed
from the right side. Moving downstream, the shed vortex is convected into the flow, and the

shear layer on the right side stretches, while the primary vortex on the left side gets stronger,

as seen from the surface-pressure curves in fig. 20. At the fifth crossflow plane (xl/L = 0.4),

the primary vortex on the right side is about to be shed. At the ninth crossflow plane

(xt/L = 0.9), the primary vortex on the right side is almost shed in the flow field, while the

lower part of shear layer on the same side has stretched and shrunk in thickness. It is also
seen that at the ninth crossflow plane, the flow is approximately a mirror image of that at the

third crossflow plane. The behavior of the flow asymmetry over one period in fig. 14 is

qualitatively similar to that of the flow asymmetry over one wave length in fig. 19.

4.2.2. Unsteady asymmetric flow over a cone

In this section, solutions of the unsteady supersonic asymmetric flow around the same

circular cone at an angle of attack of 50 ° are presented. The free-stream Reynolds number
and Mach number of this case are 8 × 10 6 and 1.4, respectively. The present flow case has

been started from the solution obtained for a = 40 °, instead of initializing with free-stream

conditions everywhere. In addition, this steady asymmetric initial condition can be considered
as the source of disturbance to the flow field, so the use of transient sideslip disturbance is

not necessary for this case.

In the computation of locally conical flow problems it has been shown that, once unsteady,

asymmetric vortex shedding is initiated, the perturbation can be removed. The vortex

shedding will continue without the need for any further perturbations since the flow is
unstable. In order to investigate whether the same phenomena exists for the unsteady

three-dimensional asymmetric flow, the computation has been first done using pseudo-time

stepping until the residual error drops three orders of magnitude. The flow asymmetry,
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Fig. 18. Total-pressure-loss contours of flow around 5 ° semiapex-angle cone (a = 40 °, M= = 1.4, Re = 6 x 10 _).

Fig. 19. Total-pressure-loss contours of flow around 5 ° semiapex-angle cone (a = 40 °, M_ = 1.4, Re = 8 x 10").
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changing randomly from the left side to right side, has been captured by the pseudo-time

stepping calculation, which indicates a possibility of unsteady vortex shedding. The computa-
tion has been continued using time-accurate calculations with a minimum global time step of

10 -5. The unsteady structure of the flow at a = 50* is monitored at different time steps to see

the mechanism of the unsteady vortex shedding and the unsteady behavior of the vortex

structure. Due to the fine computational grid spacing at the nose region and the cone surface,
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the allowable computational time step is so small that the calculation becomes prohibitively

expensive for time-marching more than a small part of a shedding cycle.
Consequently, only small changes are visible in the instantaneous snapshots of the unsteady

asymmetric flow solutions presented in this section. The flow at time step 10616 is shown by

the total-pressure-loss contours (fig. 21), surface-pressure coefficients (fig. 23) and enlarge-

ment of the total-pressure-loss contours (fig. 24). The same quantities for time step 11 816 are

shown in figs. 22, 25, 26. Figure 21 shows a strongly asymmetric solution with vortex shedding

changes little with axial location. The shear-layer thickness for each crossflow station extends
about one and one half times the local diameter of the leeward plane of symmetD', as

compared with the case of a = 40 °. It is evident that all of the three vortices interact with

each other in a relatively small distance above of the body surface. The blow-up of

total-pressure-loss contours at the time step of 11 816 (fig. 26) shows that the flow asymmetry.

changes side at the crossflow station of Xl/L--0.1, as compared with the same crossflow
section in fig. 24. Obviously, the total computed time is too short in terms of physical time to

draw final conclusions for periodic vortex shedding, but the total-pressure-loss contours
clearly show that the flow is unsteady asymmetric with a possibility of vortex shedding at each
axial station.

All of the numerical results have been obtained using either the Cray-2 supercomputer of

the NASA Langley Research center or the Cray-YMP supercomputer of the NASA Ames
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Fig. 21. Total-pressure-loss contours of flow around 5 ° semiapex-angle cone at time-step of 10616 (a = 50 °, M= = 1.4,
Re = 8 x 106).

Fig. 22. Total-pressure-loss contours of flow around 5° semiapex-angle cone at time step of 11 816 (a = 50 °, M® = 1.4,

Re = 8 x 106).
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Fig. 24. Blow-up of the total-pressure-loss contours on 5° semiapcx-angle cone at time step of 10616 (a = 50 °,
M:_= 1.4, Rc = 8× 10¢').
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Fig. 24. (Continued}.

Research Center. Each of the steady asymmetric flow cases takes about 100 h of CPU time on

the Cray-2 and 65 h of CPU time on the Cray-YMP computer. The unsteady asymmetric flow

case takes over 82 h of CPU time on the Cray-YMP computer for the 11 816 computed time

steps.

4.2.3. Asymmetric flow over cone-cylinder configurations

The effect of a cylindrical afterbody on flow asymmetry is investigated by introducing a

cylindrical afterbody of unit length to the same circular cone. The flow around the resulting

cone-cylinder configuration is solved with the flow conditions as for a = 40 °, M_ = 1.4, and
Re = 4 × 10 6, which are the same flow conditions of the isolated unit-length cone shown in

fig. 16. The source of disturbance is the same 2 ° transient sideslip. The computed total-pres-
sure-loss contours are shown in fig. 27. It should be noted that slight flow unsteadiness has
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been observed during the computations. Comparing the results for fig. 16 with fig. 27, it is

noticed that the flow asymmetry is stronger for the cone-cylinder configuration than that of

the isolated conical forebody. It should be noted that subsonic flow region does exist inside

the conical shock surrounding the cone-cylinder configuration, hence, the downstream cylin-

drical-afterbody boundary has an upstream effect on the flow. There are two reasons for the

afterbody to increase the flow asymmetry; the first is the increase of the local angle of attack
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Fig. 25. Surface-pressure coefficient on 5 ° semiapex-angle cone at time step of 11816 (a=50 °, M_=1.4,

Re = 8 × 106).
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Fig. 25. (Continued).

of the leeward side of the cylinder, and the second is the surface discontinuity at the

cone-cylinder juncture. Both of these increase the spatial growth of the flow asymmetry.

Next, a validation flow case is presented by comparing with available experimental data.

For this purpose, the cone-cylinder configuration of 0.5 : 0.5 (the ratio of the conical forebody

to the cylindrical afterbody) is used, which was experimentally tested by Landrum (1977). The

flow conditions for this case are a = 46.1 °, M_ = 1.6, and Re = 6.6 × 10 _. The Reynolds

number for this case is based on the total body length. The cone semiapex angle is 9.46 °, and

the numerical computation is assumed to be fully laminar. The problem is solved using a grid

size of 65 × 161 × 81, which has the same resolution in the crossflow plane as the previous

cases. Figure 28 presents the computed total-pressure-loss contours, which show a relatively

weak asymmetry at the nose region and a strong spatially growing asymmetry in the

downstream direction. Figure 29 shows the surface-pressure coefficient along with the

experimental data, and figs. 30 and 31 show the total-pressure-loss contours and the total

Mach-number contours in the crossflow planes at the axial stations of 0.075, 0.225, 0.475, and

0.775. The computed (solid line) and measured (symbol) surface-pressure coefficients are in

zl/L = 0.05 zt/L = 0.1

Fig. 26. Blow-up of the total-pressure-loss contours on 5: semiapex-angle cone at time step of 11816 (or = 50°.
M_= 1.4, Re =8× 1(1").
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Fig. 26. (Continued).
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Fig. 27. Total-pressure-loss contours of flow around 5° semiapex-angle cone-cylinder configuration (a = 40 °.
M_= 1,4, Re = 4× 106).

Fig. 28. Total-pressure-loss contours of flow around 9.46 ° semiapex-angle cone-cylinder configuration (a = 46.1 °,

M= = 1.6, Re = 6.6x 106).
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Fig. 29. Surface-pressure coefficient on 9.46* semiapex-angle cone-cylinder configuration (a = 46.1% M_= 1.6,

Re -- 6.6 x 106) (experiment: Landrum, 1977).

good agreement, with the exception of the region close to the leeward plane of symmetry. By

studying the blow-up of the total-pressure-loss contours (fig. 30), it is seen that a slight flow

asymmetry starts at xl/L = 0.075 and spatially grows in the downstream direction. The total

Mach-number contours (fig. 31) show that the shocks on the primary vortices are asymmetric
and change sides as moving downstream, as shown by the results at the axial stations of 0.475

and 0.775. It is noticed that the flow asymmetry of this case is relatively weaker than that of

the 5° semiapex-angle cone-cylinder case because the relative incidence of the forebody of the
former case is lower than the latter.

5. Conclusions

The main goal of the present work is to predict asymmetric vortex-dominated flows around

slender bodies over a wide range of angles of attack, Mach numbers, and Reynolds numbers.

In this section, a summary of the findings of the numerical investigation is presented. First,

steady and unsteady solutions of supersonic asymmetric flows around a circular cone have

been obtained using the thin-layer Navier-Stokes equations along with the locally conical flow
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x_/L = 0.075 zl/L = 0.225

xl/L = 0.475 xl/L = 0.775

Fig. 30. Blow-up of the total-pressure-loss contours on 9.46 ° semiapex-angle cone-cylinder configuration (a = 46.1 °,

Ms = 1.6. Re = 6.6× 10t').

assumption. The results have shown that the onset of flow asymmetry occurs when the relative
incidence of cones exceeds certain critical values. At these critical values of relative incidence,

asymmetric flow develops, irrespective of the sources of disturbance. Two types of flow

disturbances of short duration are used to demonstrate that the asymmetric solution is unique

and that the mechanism leads to flow asymmetry due to instability of the saddle point, even

without the presence of any permanent disturbance. It has also been shown that as the Mach

number increases, vortex flow asymmetry becomes weaker. In the high angle-of-attack regime,

unsteady asymmetric flow with periodic vortex shedding has been uniquely captured.

Second, asymmetric supersonic three-dimensional flow problems have been solved using

the thin-layer Navier-Stokes equations. Steady and unsteady flow solutions for asymmetric
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xl/L = 0.225

xl/L = 0.475 xx/L = 0.775

Fig. 31. Blow-up of the total-Mach-number contours on 9.46 ° semiapex-angle cone-cylinder configuration (a = 46.1 °,

m_ = 1.6. Re = 6.6x 10").

supersonic flow over a circular cone and cone-cylinder configurations have been presented.

However, because there is a serious lack of steady and unsteady three-dimensional detailed

experimental measurements for supersonic asymmetric vortex flows, only surface-pressure

coefficients from one of the cases are validated with the experiment in the present study.
It is shown that the three-dimensional flow calculation does not produce the same solution

as that of the corresponding flow case under the locally conical assumption. The reason is that

for the viscous flow problem the transformed equation using the locally conical flow assump-
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tion is not self similar. However, most of the characteristics and physics of the asymmetric
flow can be simulated. The three-dimensional numerical results also show that the onset of

steady and unsteady asymmetric flow develops due to a transient sideslip disturbance of short

duration, provided that the body is at a certain critical range of Mach number, Reynolds

number, and angle of attack. The steady and unsteady asymmetric flow solutions have been

obtained without the need to impose any permanent type disturbance. As the free-stream

Reynolds number increases for flows around a cone, the flow asymmetry becomes strong and

changes sides in the downstream direction. For the high-Reynolds number flows, the spatially

asymmetric flow develops in a wavy manner. The mechanism of vortex shedding is qualita-

tively similar to the temporal asymmetric flow of the locally conical flow solution, where the

flow asymmetry develops in a periodic manner. As the angle of attack increases, the flow

asymmetry becomes stronger and unsteady. The unsteady asymmetric flow case shows

evidence of multiple small-scale vortices moving along the body and vortex shedding at each
section.

Adding a cylindrical afterbody to the conical forebody strengths the flow asymmetry in

comparison with that of the isolated cone. Finally, a comparison of the computed surface-

pressure coefficients with the experimental measurement for a cone-cylinder configuration is

given. The results show that a slight flow asymmetry starts close to the nose region and

spatially grows moving downstream. The shocks on the top of the primary vortices show

strong asymmetry and change sides in the downstream direction.

The next step for the research work is to study the control of three-dimensional asymmetric

supersonic flow using a passive-control method in the form of side-strakes and/or an

active-control method in the form of blowing or suction ports with various blowing rates and

orientations of the ports on the body surface.
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